jcmachicao commited on
Commit
e9c877c
·
verified ·
1 Parent(s): 1b5b61b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -11
app.py CHANGED
@@ -30,7 +30,7 @@ if uploaded_file is not None:
30
 
31
  # Seleccion de categorias
32
  st.write(df_050.shape)
33
- MAX_CAT = st.slider('Maximo numero de categorias: ', 10, 30, 20)
34
 
35
  # Depuración de columnas sólo para aquellas que contribuyen al clustering
36
  col_selec = []
@@ -47,9 +47,11 @@ if uploaded_file is not None:
47
  df_110 = pd.get_dummies(df_100)
48
 
49
  # Calcular línea base
50
- df_linBase = df_110.mean() / df_110.max() * 100
51
- df_linBase2 = pd.DataFrame(df_linBase)
52
- csv_10 = df_linBase2.to_csv(encoding='iso-8859-1')
 
 
53
 
54
  st.download_button(
55
  label="Descargar CSV",
@@ -198,15 +200,25 @@ if uploaded_file is not None:
198
  mean_values = dfx.mean()/dfx.max()*100
199
  result = pd.concat([percentage_presence, mean_values])
200
  df2 = pd.DataFrame()
201
- df2['a'] = result
202
- df2['b'] = result.index
203
- df2 = df2.sort_values(by='a', ascending=False)
204
- st.write(df2.columns)
205
- df3 = df2.head(20)
206
- fig3 = px.line_polar(df3, r='a', theta='b')
 
 
207
  st.plotly_chart(fig3)
 
 
 
 
 
 
 
 
208
 
209
- csv2 = df2.to_csv(encoding='iso-8859-1')
210
 
211
  st.download_button(
212
  label="Descargar CSV",
@@ -214,3 +226,5 @@ if uploaded_file is not None:
214
  file_name='frecuencias_experimento.csv',
215
  mime='text/csv'
216
  )
 
 
 
30
 
31
  # Seleccion de categorias
32
  st.write(df_050.shape)
33
+ MAX_CAT = st.slider('Maximo numero de categorias: ', 10, 30, 30)
34
 
35
  # Depuración de columnas sólo para aquellas que contribuyen al clustering
36
  col_selec = []
 
47
  df_110 = pd.get_dummies(df_100)
48
 
49
  # Calcular línea base
50
+ df_linbase = df_110.mean() / df_110.max() * 100
51
+ df_linbase2 = pd.DataFrame(df_linbase)
52
+ df_linbase2['col_cats'] = df_linbase2.index
53
+ df_linbase2.columns=['valor', 'col_cats']
54
+ csv_10 = df_linbase2.to_csv(encoding='iso-8859-1')
55
 
56
  st.download_button(
57
  label="Descargar CSV",
 
200
  mean_values = dfx.mean()/dfx.max()*100
201
  result = pd.concat([percentage_presence, mean_values])
202
  df2 = pd.DataFrame()
203
+ df2['valor_hex'] = result
204
+ df2['col_cats'] = result.index
205
+ df2 = df2.sort_values(by='valor_hex', ascending=False)
206
+ df3 = df2.head(25)
207
+
208
+ st.subheader('Radar Porcentajes Categorias')
209
+
210
+ fig3 = px.line_polar(df3, r='valor_hex', theta='col_cats')
211
  st.plotly_chart(fig3)
212
+
213
+ df_result = pd.merge(df3, df_linbase2, on='col_cats', how='left')
214
+ df_result = df_result[['col_cats', 'valor_hex', 'valor']]
215
+ df_result['diff_linbase'] = df_result.valor_hex - df_result.valor
216
+
217
+ st.subheader('Radar Diferencia con Linea Base')
218
+ fig4 = px.line_polar(df_result, r='diff_linbase', theta='col_cats')
219
+ st.plotly_chart(fig4)
220
 
221
+ csv2 = df_result.to_csv(encoding='iso-8859-1')
222
 
223
  st.download_button(
224
  label="Descargar CSV",
 
226
  file_name='frecuencias_experimento.csv',
227
  mime='text/csv'
228
  )
229
+
230
+