Upload app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ if uploaded_file is not None:
|
|
30 |
|
31 |
# Seleccion de categorias
|
32 |
st.write(df_050.shape)
|
33 |
-
MAX_CAT = st.slider('Maximo numero de categorias: ', 10, 30,
|
34 |
|
35 |
# Depuración de columnas sólo para aquellas que contribuyen al clustering
|
36 |
col_selec = []
|
@@ -47,9 +47,11 @@ if uploaded_file is not None:
|
|
47 |
df_110 = pd.get_dummies(df_100)
|
48 |
|
49 |
# Calcular línea base
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
st.download_button(
|
55 |
label="Descargar CSV",
|
@@ -198,15 +200,25 @@ if uploaded_file is not None:
|
|
198 |
mean_values = dfx.mean()/dfx.max()*100
|
199 |
result = pd.concat([percentage_presence, mean_values])
|
200 |
df2 = pd.DataFrame()
|
201 |
-
df2['
|
202 |
-
df2['
|
203 |
-
df2 = df2.sort_values(by='
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
207 |
st.plotly_chart(fig3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
csv2 =
|
210 |
|
211 |
st.download_button(
|
212 |
label="Descargar CSV",
|
@@ -214,3 +226,5 @@ if uploaded_file is not None:
|
|
214 |
file_name='frecuencias_experimento.csv',
|
215 |
mime='text/csv'
|
216 |
)
|
|
|
|
|
|
30 |
|
31 |
# Seleccion de categorias
|
32 |
st.write(df_050.shape)
|
33 |
+
MAX_CAT = st.slider('Maximo numero de categorias: ', 10, 30, 30)
|
34 |
|
35 |
# Depuración de columnas sólo para aquellas que contribuyen al clustering
|
36 |
col_selec = []
|
|
|
47 |
df_110 = pd.get_dummies(df_100)
|
48 |
|
49 |
# Calcular línea base
|
50 |
+
df_linbase = df_110.mean() / df_110.max() * 100
|
51 |
+
df_linbase2 = pd.DataFrame(df_linbase)
|
52 |
+
df_linbase2['col_cats'] = df_linbase2.index
|
53 |
+
df_linbase2.columns=['valor', 'col_cats']
|
54 |
+
csv_10 = df_linbase2.to_csv(encoding='iso-8859-1')
|
55 |
|
56 |
st.download_button(
|
57 |
label="Descargar CSV",
|
|
|
200 |
mean_values = dfx.mean()/dfx.max()*100
|
201 |
result = pd.concat([percentage_presence, mean_values])
|
202 |
df2 = pd.DataFrame()
|
203 |
+
df2['valor_hex'] = result
|
204 |
+
df2['col_cats'] = result.index
|
205 |
+
df2 = df2.sort_values(by='valor_hex', ascending=False)
|
206 |
+
df3 = df2.head(25)
|
207 |
+
|
208 |
+
st.subheader('Radar Porcentajes Categorias')
|
209 |
+
|
210 |
+
fig3 = px.line_polar(df3, r='valor_hex', theta='col_cats')
|
211 |
st.plotly_chart(fig3)
|
212 |
+
|
213 |
+
df_result = pd.merge(df3, df_linbase2, on='col_cats', how='left')
|
214 |
+
df_result = df_result[['col_cats', 'valor_hex', 'valor']]
|
215 |
+
df_result['diff_linbase'] = df_result.valor_hex - df_result.valor
|
216 |
+
|
217 |
+
st.subheader('Radar Diferencia con Linea Base')
|
218 |
+
fig4 = px.line_polar(df_result, r='diff_linbase', theta='col_cats')
|
219 |
+
st.plotly_chart(fig4)
|
220 |
|
221 |
+
csv2 = df_result.to_csv(encoding='iso-8859-1')
|
222 |
|
223 |
st.download_button(
|
224 |
label="Descargar CSV",
|
|
|
226 |
file_name='frecuencias_experimento.csv',
|
227 |
mime='text/csv'
|
228 |
)
|
229 |
+
|
230 |
+
|