Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
st.title("Visualización y Clusterización automática de Data de Estudiantes")
|
6 |
st.write("Cargue el archivo PKL para visualizar el análisis de su contenido.")
|
@@ -9,14 +16,74 @@ uploaded_file = st.file_uploader("Cargar archivo: ", type='pkl')
|
|
9 |
if uploaded_file is not None:
|
10 |
|
11 |
df = pd.read_pickle(uploaded_file)
|
12 |
-
st.write(df.columns)
|
13 |
|
14 |
-
|
|
|
15 |
df_050.index = df_050.DNI
|
|
|
|
|
16 |
col_selec = []
|
17 |
for col in df_050.columns:
|
18 |
u_col = df_050[col].unique()
|
19 |
if len(u_col) < 25:
|
20 |
-
print(col, '*****', u_col)
|
21 |
col_selec.append(col)
|
|
|
|
|
22 |
st.write(col_selec)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import plotly.express as px
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sklearn.decomposition import PCA
|
10 |
+
scaler = StandardScaler()
|
11 |
|
12 |
st.title("Visualización y Clusterización automática de Data de Estudiantes")
|
13 |
st.write("Cargue el archivo PKL para visualizar el análisis de su contenido.")
|
|
|
16 |
if uploaded_file is not None:
|
17 |
|
18 |
df = pd.read_pickle(uploaded_file)
|
|
|
19 |
|
20 |
+
# Eliminación de datos inválidos
|
21 |
+
df_050 = df.dropna(axis=0)
|
22 |
df_050.index = df_050.DNI
|
23 |
+
|
24 |
+
# Depuración de columnas sólo para aquellas que contribuyen al clustering
|
25 |
col_selec = []
|
26 |
for col in df_050.columns:
|
27 |
u_col = df_050[col].unique()
|
28 |
if len(u_col) < 25:
|
|
|
29 |
col_selec.append(col)
|
30 |
+
|
31 |
+
st.write('Esta es la lista de variables que será usada para la clusterización.')
|
32 |
st.write(col_selec)
|
33 |
+
|
34 |
+
df_100 = df_050[col_selec]
|
35 |
+
df_110 = pd.get_dummies(df_100)
|
36 |
+
|
37 |
+
st.write('Esta es la matriz de correlación de todas las categorías')
|
38 |
+
|
39 |
+
corr_matrix = df_110.corr()
|
40 |
+
plt.figure(figsize=(21, 21)) # Adjust the figure size as needed
|
41 |
+
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5, annot_kws={'size': 5})
|
42 |
+
plt.title('Mapa de Calor de la Correlation de Variables')
|
43 |
+
st.pyplot(plt)
|
44 |
+
|
45 |
+
st.write('A continuación se va a hacer el clustering usando PCA.')
|
46 |
+
|
47 |
+
X_sc = scaler.fit_transform(df_110)
|
48 |
+
st.write('La forma de la data es: ', X_sc.shape)
|
49 |
+
has_nan = np.isnan(X_sc).sum()
|
50 |
+
pca = PCA(n_components=2)
|
51 |
+
pca.fit(X_sc)
|
52 |
+
X_pca = pca.transform(X_sc)
|
53 |
+
data_200 = df_100
|
54 |
+
data_200['pca_1'] = X_pca[:, 0]
|
55 |
+
data_200['pca_2'] = X_pca[:, 1]
|
56 |
+
|
57 |
+
plt.figure(figsize=(8, 8))
|
58 |
+
plt.scatter(data_200.pca_1, data_200.pca_2)
|
59 |
+
plt.title('Diagrama de Dispersión PCA')
|
60 |
+
plt.xlabel('Principal Component 1')
|
61 |
+
plt.ylabel('Principal Component 2')
|
62 |
+
|
63 |
+
st.pyplot(plt)
|
64 |
+
st.write(data_200.columns)
|
65 |
+
|
66 |
+
VIRTU = st.selectbox('Virtual: ', [0, 1])
|
67 |
+
INGRE = st.selectbox('Ingresante: ', [0, 1])
|
68 |
+
|
69 |
+
data_210 = data_200[(data_200['COD_DEPARTAMENTO']==VIRTU) & (data_200['ESTADO_ESTUDIANTE']==INGRE)]
|
70 |
+
|
71 |
+
fig2 = px.scatter(data_210, x='pca_1', y='pca_2', title='Distribución PCA', width=800, height=800)
|
72 |
+
st.plotly_chart(fig2)
|
73 |
+
|
74 |
+
plt.figure(figsize=(10, 8))
|
75 |
+
plt_extracto = plt.hexbin(data_200.pca_1, data_200.pca_2, gridsize=50, cmap='inferno')
|
76 |
+
plt.colorbar()
|
77 |
+
plt.title('Hexbin Plot of PCA-Transformed Data')
|
78 |
+
plt.xlabel('Principal Component 1')
|
79 |
+
plt.ylabel('Principal Component 2')
|
80 |
+
st.pyplot(plt)
|
81 |
+
|
82 |
+
plt.figure(figsize=(7, 4))
|
83 |
+
densidades = pd.DataFrame(plt_extracto.get_array())
|
84 |
+
densidades.hist(bins=50, log=True)
|
85 |
+
plt.xlabel('Cantidad de Ocurrencias')
|
86 |
+
plt.ylabel('Frecuencia')
|
87 |
+
plt.title('Histograma de Densidades')
|
88 |
+
st.pyplot(plt)
|
89 |
+
|