Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Actualizado por: José Carlos Machicao, Fecha de actualización:
|
2 |
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
@@ -25,12 +25,12 @@ if uploaded_file is not None:
|
|
25 |
df_050.index = df_050.DNI
|
26 |
|
27 |
st.write(df_050.shape)
|
28 |
-
|
29 |
# Depuración de columnas sólo para aquellas que contribuyen al clustering
|
30 |
col_selec = []
|
31 |
for col in df_050.columns:
|
32 |
u_col = df_050[col].unique()
|
33 |
-
if len(u_col) <
|
34 |
col_selec.append(col)
|
35 |
|
36 |
st.header('Lista de variables que será usada para la clusterización')
|
@@ -159,8 +159,11 @@ if uploaded_file is not None:
|
|
159 |
]
|
160 |
enfoqueX['HexDens'] = 'Hex_'+str(c)
|
161 |
enfoques = pd.concat([enfoques, enfoqueX])
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
st.download_button(
|
166 |
label="Descargar CSV",
|
@@ -169,7 +172,7 @@ if uploaded_file is not None:
|
|
169 |
mime='text/csv'
|
170 |
)
|
171 |
|
172 |
-
df =
|
173 |
cat_col = df.select_dtypes(include=['object']).columns.tolist()
|
174 |
df_dummies = pd.get_dummies(df[cat_col])
|
175 |
percentage_presence = df_dummies.mean()*100
|
@@ -180,6 +183,7 @@ if uploaded_file is not None:
|
|
180 |
df2['a'] = result
|
181 |
df2['b'] = result.index
|
182 |
df2 = df2.sort_values(by='a', ascending=False)
|
|
|
183 |
df3 = df2.head(20)
|
184 |
fig3 = px.line_polar(df3, r='a', theta='b')
|
185 |
st.plotly_chart(fig3)
|
@@ -192,4 +196,3 @@ if uploaded_file is not None:
|
|
192 |
file_name='frecuencias_experimento.csv',
|
193 |
mime='text/csv'
|
194 |
)
|
195 |
-
|
|
|
1 |
+
# Actualizado por: José Carlos Machicao, Fecha de actualización: 2024_06_24, Taller Lima
|
2 |
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
|
|
25 |
df_050.index = df_050.DNI
|
26 |
|
27 |
st.write(df_050.shape)
|
28 |
+
MAX_CAT = st.slider('Maximo numero de categorias: ', 10, 30, 20)
|
29 |
# Depuración de columnas sólo para aquellas que contribuyen al clustering
|
30 |
col_selec = []
|
31 |
for col in df_050.columns:
|
32 |
u_col = df_050[col].unique()
|
33 |
+
if len(u_col) < MAX_CAT:
|
34 |
col_selec.append(col)
|
35 |
|
36 |
st.header('Lista de variables que será usada para la clusterización')
|
|
|
159 |
]
|
160 |
enfoqueX['HexDens'] = 'Hex_'+str(c)
|
161 |
enfoques = pd.concat([enfoques, enfoqueX])
|
162 |
+
|
163 |
+
st.write(enfoques.columns)
|
164 |
+
|
165 |
+
enfoques2 = enfoques.drop(columns=['pca_1', 'pca_2'])
|
166 |
+
csv = enfoques2.to_csv(encoding='iso-8859-1')
|
167 |
|
168 |
st.download_button(
|
169 |
label="Descargar CSV",
|
|
|
172 |
mime='text/csv'
|
173 |
)
|
174 |
|
175 |
+
df = enfoques2
|
176 |
cat_col = df.select_dtypes(include=['object']).columns.tolist()
|
177 |
df_dummies = pd.get_dummies(df[cat_col])
|
178 |
percentage_presence = df_dummies.mean()*100
|
|
|
183 |
df2['a'] = result
|
184 |
df2['b'] = result.index
|
185 |
df2 = df2.sort_values(by='a', ascending=False)
|
186 |
+
st.write(df2.columns)
|
187 |
df3 = df2.head(20)
|
188 |
fig3 = px.line_polar(df3, r='a', theta='b')
|
189 |
st.plotly_chart(fig3)
|
|
|
196 |
file_name='frecuencias_experimento.csv',
|
197 |
mime='text/csv'
|
198 |
)
|
|