Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -315,300 +315,38 @@ def run_pipeline(image: PILImage.Image, prompt: str):
|
|
315 |
return f"Error processing request: {str(e)}", None
|
316 |
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
#
|
321 |
-
#
|
322 |
-
custom_css = """
|
323 |
-
:root {
|
324 |
-
--primary: #6C63FF;
|
325 |
-
--secondary: #4A44A6;
|
326 |
-
--accent: #FF6584;
|
327 |
-
--dark: #2A2A3C;
|
328 |
-
--light: #F8F9FF;
|
329 |
-
--success: #36D399;
|
330 |
-
}
|
331 |
-
|
332 |
-
body {
|
333 |
-
background: linear-gradient(135deg, #2A2A3C 0%, #1A1A2E 100%);
|
334 |
-
color: var(--light);
|
335 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
336 |
-
}
|
337 |
-
|
338 |
-
.gradio-container {
|
339 |
-
max-width: 1200px !important;
|
340 |
-
margin: 0 auto;
|
341 |
-
background: rgba(30, 30, 46, 0.8) !important;
|
342 |
-
backdrop-filter: blur(10px);
|
343 |
-
border-radius: 20px;
|
344 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
345 |
-
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5);
|
346 |
-
}
|
347 |
-
|
348 |
-
header {
|
349 |
-
text-align: center;
|
350 |
-
padding: 2rem 0;
|
351 |
-
background: linear-gradient(90deg, var(--primary) 0%, var(--secondary) 100%);
|
352 |
-
border-radius: 20px 20px 0 0 !important;
|
353 |
-
margin-bottom: 2rem;
|
354 |
-
}
|
355 |
-
|
356 |
-
h1 {
|
357 |
-
font-size: 2.5rem !important;
|
358 |
-
font-weight: 700;
|
359 |
-
margin-bottom: 0.5rem;
|
360 |
-
background: linear-gradient(90deg, #FFFFFF 0%, #E0E0FF 100%);
|
361 |
-
-webkit-background-clip: text;
|
362 |
-
-webkit-text-fill-color: transparent;
|
363 |
-
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
364 |
-
}
|
365 |
-
|
366 |
-
.description {
|
367 |
-
font-size: 1.1rem;
|
368 |
-
max-width: 800px;
|
369 |
-
margin: 0 auto 1.5rem;
|
370 |
-
color: rgba(255, 255, 255, 0.85);
|
371 |
-
line-height: 1.6;
|
372 |
-
}
|
373 |
-
|
374 |
-
.input-panel, .output-panel {
|
375 |
-
background: rgba(40, 40, 60, 0.7) !important;
|
376 |
-
border-radius: 15px !important;
|
377 |
-
padding: 1.5rem !important;
|
378 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
379 |
-
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.3);
|
380 |
-
transition: all 0.3s ease;
|
381 |
-
}
|
382 |
-
|
383 |
-
.input-panel:hover, .output-panel:hover {
|
384 |
-
transform: translateY(-5px);
|
385 |
-
box-shadow: 0 12px 24px rgba(0, 0, 0, 0.4);
|
386 |
-
}
|
387 |
-
|
388 |
-
.input-panel h2, .output-panel h2 {
|
389 |
-
color: var(--primary) !important;
|
390 |
-
font-size: 1.4rem !important;
|
391 |
-
margin-bottom: 1.2rem !important;
|
392 |
-
display: flex;
|
393 |
-
align-items: center;
|
394 |
-
}
|
395 |
-
|
396 |
-
.input-panel h2:before, .output-panel h2:before {
|
397 |
-
content: "•";
|
398 |
-
color: var(--accent);
|
399 |
-
margin-right: 10px;
|
400 |
-
font-size: 1.8rem;
|
401 |
-
}
|
402 |
-
|
403 |
-
.image-preview {
|
404 |
-
border-radius: 12px !important;
|
405 |
-
overflow: hidden;
|
406 |
-
border: 2px solid rgba(255, 255, 255, 0.1);
|
407 |
-
}
|
408 |
-
|
409 |
-
textarea, input {
|
410 |
-
background: rgba(30, 30, 50, 0.8) !important;
|
411 |
-
color: white !important;
|
412 |
-
border: 1px solid rgba(255, 255, 255, 0.1) !important;
|
413 |
-
border-radius: 10px !important;
|
414 |
-
padding: 12px 15px !important;
|
415 |
-
}
|
416 |
-
|
417 |
-
textarea:focus, input:focus {
|
418 |
-
border-color: var(--primary) !important;
|
419 |
-
box-shadow: 0 0 0 2px rgba(108, 99, 255, 0.3) !important;
|
420 |
-
}
|
421 |
-
|
422 |
-
button {
|
423 |
-
background: linear-gradient(90deg, var(--primary) 0%, var(--secondary) 100%) !important;
|
424 |
-
color: white !important;
|
425 |
-
border: none !important;
|
426 |
-
border-radius: 50px !important;
|
427 |
-
padding: 12px 30px !important;
|
428 |
-
font-weight: 600 !important;
|
429 |
-
font-size: 1.1rem !important;
|
430 |
-
box-shadow: 0 5px 15px rgba(108, 99, 255, 0.4) !important;
|
431 |
-
transition: all 0.3s ease !important;
|
432 |
-
text-transform: uppercase;
|
433 |
-
letter-spacing: 1px;
|
434 |
-
}
|
435 |
-
|
436 |
-
button:hover {
|
437 |
-
transform: translateY(-3px) !important;
|
438 |
-
box-shadow: 0 8px 20px rgba(108, 99, 255, 0.6) !important;
|
439 |
-
}
|
440 |
-
|
441 |
-
button:active {
|
442 |
-
transform: translateY(1px) !important;
|
443 |
-
}
|
444 |
-
|
445 |
-
.examples {
|
446 |
-
background: rgba(40, 40, 60, 0.7) !important;
|
447 |
-
border-radius: 15px !important;
|
448 |
-
padding: 1.5rem !important;
|
449 |
-
margin-top: 1.5rem;
|
450 |
-
}
|
451 |
-
|
452 |
-
.examples h2 {
|
453 |
-
color: var(--accent) !important;
|
454 |
-
font-size: 1.4rem !important;
|
455 |
-
margin-bottom: 1.2rem !important;
|
456 |
-
}
|
457 |
-
|
458 |
-
.example-image {
|
459 |
-
border-radius: 12px !important;
|
460 |
-
overflow: hidden;
|
461 |
-
transition: all 0.3s ease;
|
462 |
-
border: 2px solid transparent;
|
463 |
-
}
|
464 |
-
|
465 |
-
.example-image:hover {
|
466 |
-
transform: scale(1.03);
|
467 |
-
border-color: var(--primary);
|
468 |
-
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.4);
|
469 |
-
}
|
470 |
-
|
471 |
-
.output-text {
|
472 |
-
background: rgba(30, 30, 50, 0.8) !important;
|
473 |
-
color: white !important;
|
474 |
-
border-radius: 12px !important;
|
475 |
-
padding: 20px !important;
|
476 |
-
border: 1px solid rgba(255, 255, 255, 0.1);
|
477 |
-
min-height: 150px;
|
478 |
-
font-family: monospace;
|
479 |
-
white-space: pre-wrap;
|
480 |
-
overflow: auto;
|
481 |
-
max-height: 300px;
|
482 |
-
}
|
483 |
-
|
484 |
-
.footer {
|
485 |
-
text-align: center;
|
486 |
-
padding: 1.5rem 0;
|
487 |
-
margin-top: 2rem;
|
488 |
-
color: rgba(255, 255, 255, 0.6);
|
489 |
-
font-size: 0.9rem;
|
490 |
-
border-top: 1px solid rgba(255, 255, 255, 0.1);
|
491 |
-
}
|
492 |
-
|
493 |
-
@keyframes pulse {
|
494 |
-
0% { box-shadow: 0 0 0 0 rgba(108, 99, 255, 0.7); }
|
495 |
-
70% { box-shadow: 0 0 0 10px rgba(108, 99, 255, 0); }
|
496 |
-
100% { box-shadow: 0 0 0 0 rgba(108, 99, 255, 0); }
|
497 |
-
}
|
498 |
-
|
499 |
-
.pulse {
|
500 |
-
animation: pulse 2s infinite;
|
501 |
-
}
|
502 |
-
"""
|
503 |
-
|
504 |
-
# 创建界面
|
505 |
-
with gr.Blocks(
|
506 |
-
title="Seg-R1 | Advanced Visual Segmentation",
|
507 |
-
css=custom_css,
|
508 |
-
theme=gr.themes.Default(
|
509 |
-
primary_hue="purple",
|
510 |
-
secondary_hue="indigo",
|
511 |
-
neutral_hue="slate"
|
512 |
-
)
|
513 |
-
) as demo:
|
514 |
-
# 标题区域
|
515 |
-
gr.Markdown("""
|
516 |
-
<div style='text-align: center; padding: 2rem 0;'>
|
517 |
-
<h1>Seg-R1: Advanced Visual Segmentation Assistant</h1>
|
518 |
-
<p class='description'>
|
519 |
-
Upload an image and describe what you want to segment. Our AI will analyze the image,
|
520 |
-
generate segmentation prompts, and highlight the selected objects with precision.
|
521 |
-
</p>
|
522 |
-
</div>
|
523 |
-
""")
|
524 |
-
|
525 |
-
# 主内容区
|
526 |
-
with gr.Row(equal_height=True):
|
527 |
-
# 左侧输入面板
|
528 |
-
with gr.Column(scale=5):
|
529 |
-
with gr.Group(elem_classes="input-panel"):
|
530 |
-
gr.Markdown("## 📷 Image Input")
|
531 |
-
image_input = gr.Image(
|
532 |
-
type="pil",
|
533 |
-
label="Upload Image",
|
534 |
-
elem_classes="image-preview",
|
535 |
-
height=400
|
536 |
-
)
|
537 |
-
|
538 |
-
gr.Markdown("## 💬 Question")
|
539 |
-
text_input = gr.Textbox(
|
540 |
-
lines=3,
|
541 |
-
label="Describe what you want to segment",
|
542 |
-
placeholder="Example: 'Segment the dog in the image' or 'Find all cars in the scene'",
|
543 |
-
interactive=True
|
544 |
-
)
|
545 |
-
|
546 |
-
with gr.Row():
|
547 |
-
clear_btn = gr.Button("Clear", variant="secondary")
|
548 |
-
submit_btn = gr.Button("Analyze & Segment", variant="primary", elem_classes="pulse")
|
549 |
-
|
550 |
-
# 右侧输出面板
|
551 |
-
with gr.Column(scale=5):
|
552 |
-
with gr.Group(elem_classes="output-panel"):
|
553 |
-
gr.Markdown("## 🧠 Model Response")
|
554 |
-
text_output = gr.Textbox(
|
555 |
-
label="Reasoning & Output",
|
556 |
-
interactive=False,
|
557 |
-
elem_classes="output-text"
|
558 |
-
)
|
559 |
-
|
560 |
-
gr.Markdown("## 🎯 Segmentation Result")
|
561 |
-
image_output = gr.Image(
|
562 |
-
type="pil",
|
563 |
-
label="Highlighted Objects",
|
564 |
-
elem_classes="image-preview",
|
565 |
-
height=400
|
566 |
-
)
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
|
|
|
|
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
["imgs/painting.jpg", "Identify and segment the man an the house."],
|
576 |
-
["imgs/dogs.jpg", "Identify and segment the tongue of the dog."],
|
577 |
-
],
|
578 |
-
inputs=[image_input, text_input],
|
579 |
-
outputs=[text_output, image_output],
|
580 |
-
fn=run_pipeline,
|
581 |
-
cache_examples=False,
|
582 |
-
label="Click any example to load it",
|
583 |
-
examples_per_page=2
|
584 |
-
)
|
585 |
|
586 |
-
# 页脚
|
587 |
-
gr.Markdown("""
|
588 |
-
<div class='footer'>
|
589 |
-
<p>Seg-R1: Advanced Visual Segmentation Assistant | Built with ❤️ using Qwen-VL and SAM</p>
|
590 |
-
<p>Note: Processing may take 10-20 seconds for complex images</p>
|
591 |
-
</div>
|
592 |
-
""")
|
593 |
-
|
594 |
-
# 事件处理
|
595 |
submit_btn.click(
|
596 |
fn=run_pipeline,
|
597 |
inputs=[image_input, text_input],
|
598 |
-
outputs=[text_output, image_output]
|
599 |
-
api_name="segment"
|
600 |
)
|
601 |
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
)
|
607 |
|
608 |
if __name__ == "__main__":
|
609 |
-
demo.launch(
|
610 |
-
server_name="0.0.0.0",
|
611 |
-
server_port=7860,
|
612 |
-
share=False,
|
613 |
-
# favicon_path="favicon.ico" # 可选:添加自定义favicon
|
614 |
-
)
|
|
|
315 |
return f"Error processing request: {str(e)}", None
|
316 |
|
317 |
|
318 |
+
|
319 |
+
with gr.Blocks(title="Seg-R1") as demo:
|
320 |
+
gr.Markdown("# Seg-R1")
|
321 |
+
# gr.Markdown("Upload an image and ask questions about segmentation.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
with gr.Row():
|
324 |
+
with gr.Column():
|
325 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
326 |
+
text_input = gr.Textbox(lines=2, label="Question", placeholder="Ask about objects in the image...")
|
327 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
328 |
|
329 |
+
with gr.Column():
|
330 |
+
text_output = gr.Textbox(label="Model Response", interactive=False)
|
331 |
+
image_output = gr.Image(type="pil", label="Segmentation Result", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
submit_btn.click(
|
334 |
fn=run_pipeline,
|
335 |
inputs=[image_input, text_input],
|
336 |
+
outputs=[text_output, image_output]
|
|
|
337 |
)
|
338 |
|
339 |
+
gr.Examples(
|
340 |
+
examples=[
|
341 |
+
["imgs/cards.jpg", "Identify and segment the Ace of Spades."],
|
342 |
+
["imgs/painting.jpg", "Identify and segment the man an the house."],
|
343 |
+
["imgs/dogs.jpg", "Identify and segment the tongue of the dog."],
|
344 |
+
],
|
345 |
+
inputs=[image_input, text_input],
|
346 |
+
outputs=[text_output, image_output],
|
347 |
+
fn=run_pipeline,
|
348 |
+
cache_examples=True
|
349 |
)
|
350 |
|
351 |
if __name__ == "__main__":
|
352 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|