import torch from flask import Flask, render_template, request, jsonify, redirect, session import json import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from transformers import AutoConfig import time from waitress import serve from simple_salesforce import Salesforce import requests # Initialize Flask app app = Flask(__name__) app.secret_key = os.urandom(24) # For session handling # Use whisper-small for faster processing and better speed device = "cuda" if torch.cuda.is_available() else "cpu" # Create config object to set timeout and other parameters config = AutoConfig.from_pretrained("openai/whisper-small") config.update({"timeout": 60}) # Set timeout to 60 seconds # Salesforce connection details try: print("Attempting to connect to Salesforce...") sf = Salesforce(username='diggavalli98@gmail.com', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q') print("Connected to Salesforce successfully!") print("User Info:", sf.UserInfo) # Log the user info to verify the connection except Exception as e: print(f"Failed to connect to Salesforce: {str(e)}") # Functions for Salesforce operations def create_salesforce_record(sf, name, email, phone_number): try: customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone_number }) return customer_login except Exception as e: raise Exception(f"Failed to create record: {str(e)}") def get_menu_items(sf): query = "SELECT Name, Price__c, Ingredients__c, Category__c FROM Menu_Item__c" result = sf.query(query) return result['records'] # Voice-related functions def generate_audio_prompt(text, filename): try: tts = gTTS(text) tts.save(os.path.join("static", filename)) except gtts.tts.gTTSError as e: print(f"Error: {e}") print("Retrying after 5 seconds...") time.sleep(5) # Wait for 5 seconds before retrying generate_audio_prompt(text, filename) # Utility functions def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono audio.export(output_path, format="wav") except Exception as e: print(f"Error: {str(e)}") raise Exception(f"Audio conversion failed: {str(e)}") def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration print(f"Detected nonsilent parts: {nonsilent_parts}") return len(nonsilent_parts) == 0 # If no speech detected # Routes and Views @app.route("/") def index(): return render_template("index.html") @app.route("/dashboard", methods=["GET"]) def dashboard(): return render_template("dashboard.html") # Render the dashboard template @app.route('/login', methods=['POST']) def login(): # Get data from voice bot (name, email, phone number) data = request.json # Assuming voice bot sends JSON data name = data.get('name') email = data.get('email') phone_number = data.get('phone_number') if not name or not email or not phone_number: return jsonify({'error': 'Missing required fields'}), 400 try: customer_login = create_salesforce_record(sf, name, email, phone_number) session['customer_id'] = customer_login['id'] # Store customer ID in session return redirect("/menu") # Redirect to the menu page after successful login except Exception as e: return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500 @app.route("/menu", methods=["GET"]) def menu_page(): menu_items = get_menu_items(sf) # Fetch menu items from Salesforce menu_data = [{"name": item['Name'], "price": item['Price__c'], "ingredients": item['Ingredients__c'], "category": item['Category__c']} for item in menu_items] return render_template("menu_page.html", menu_items=menu_data) @app.route("/cart", methods=["GET"]) def cart(): # Retrieve cart items from session cart_items = session.get('cart_items', []) return render_template("cart_page.html", cart_items=cart_items) @app.route("/order-summary", methods=["GET"]) def order_summary(): # Retrieve order details from session order_details = session.get('cart_items', []) total_price = sum(item['price'] * item['quantity'] for item in order_details) return render_template("order_summary.html", order_details=order_details, total_price=total_price) @app.route("/final_order", methods=["GET"]) def final_order(): # Clear cart items from the session after confirming the order session.pop('cart_items', None) return render_template("final_order.html") @app.route("/add_to_cart", methods=["POST"]) def add_to_cart(): item_name = request.json.get('item_name') quantity = request.json.get('quantity') # Retrieve the current cart items from session or initialize an empty list cart_items = session.get('cart_items', []) cart_items.append({"name": item_name, "quantity": quantity, "price": 10}) # Assuming a fixed price for now session['cart_items'] = cart_items # Save the updated cart items in session return jsonify({"success": True, "message": f"Added {item_name} to cart."}) @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: print("No audio file provided") return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert to WAV convert_to_wav(input_audio_path, output_audio_path) # Check for silence if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 else: print("Audio contains speech, proceeding with transcription.") # Use Whisper ASR model for transcription result = None retry_attempts = 3 for attempt in range(retry_attempts): try: result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config) print(f"Transcribed text: {result['text']}") break except requests.exceptions.ReadTimeout: print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...") time.sleep(5) if result is None: return jsonify({"error": "Unable to transcribe audio after retries."}), 500 transcribed_text = result["text"].strip().capitalize() print(f"Transcribed text: {transcribed_text}") # Extract name, email, and phone number from the transcribed text parts = transcribed_text.split() name = parts[0] if len(parts) > 0 else "Unknown Name" email = parts[1] if '@' in parts[1] else "unknown@domain.com" phone_number = parts[2] if len(parts) > 2 else "0000000000" print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}") # Confirm details before submission confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}" generate_audio_prompt(confirmation, "confirmation.mp3") # Simulate confirmation via user action user_confirms = True # Assuming the user confirms, you can replace this with actual user input logic if user_confirms: # Create record in Salesforce salesforce_response = create_salesforce_record(name, email, phone_number) # Log the Salesforce response print(f"Salesforce record creation response: {salesforce_response}") # Check if the response contains an error if "error" in salesforce_response: print(f"Error creating record in Salesforce: {salesforce_response['error']}") return jsonify(salesforce_response), 500 return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) except Exception as e: print(f"Error in transcribing or processing: {str(e)}") return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start Production Server if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860)