Spaces:
Sleeping
Sleeping
import torch | |
from flask import Flask, render_template, request, jsonify | |
import os | |
from transformers import pipeline | |
from gtts import gTTS | |
from pydub import AudioSegment | |
from pydub.silence import detect_nonsilent | |
from simple_salesforce import Salesforce # Import Salesforce connection | |
import re | |
from waitress import serve | |
app = Flask(__name__) | |
# Salesforce connection using provided credentials | |
sf_username = '[email protected]' | |
sf_password = 'Sati@1020' | |
sf_token = 'sSSjyhInIsUohKpG8sHzty2q' | |
# Establish Salesforce connection | |
try: | |
sf = Salesforce(username=sf_username, password=sf_password, security_token=sf_token) | |
print("Connected to Salesforce successfully!") | |
except Exception as e: | |
print(f"Failed to connect to Salesforce: {str(e)}") | |
# Use whisper-small for faster processing and better speed | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1) | |
# Function to generate audio prompts | |
def generate_audio_prompt(text, filename): | |
tts = gTTS(text=text, lang="en") | |
tts.save(os.path.join("static", filename)) | |
# Generate required voice prompts | |
prompts = { | |
"welcome": "Welcome to Biryani Hub.", | |
"ask_name": "Tell me your name.", | |
"ask_email": "Please provide your email address.", | |
"thank_you": "Thank you for registration." | |
} | |
for key, text in prompts.items(): | |
generate_audio_prompt(text, f"{key}.mp3") | |
# Symbol mapping for proper recognition | |
SYMBOL_MAPPING = { | |
"at the rate": "@", | |
"at": "@", | |
"dot": ".", | |
"underscore": "_", | |
"hash": "#", | |
"plus": "+", | |
"dash": "-", | |
"comma": ",", | |
"space": " " | |
} | |
# Function to convert audio to WAV format | |
def convert_to_wav(input_path, output_path): | |
try: | |
audio = AudioSegment.from_file(input_path) | |
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono | |
audio.export(output_path, format="wav") | |
except Exception as e: | |
raise Exception(f"Audio conversion failed: {str(e)}") | |
# Function to check if audio contains actual speech | |
def is_silent_audio(audio_path): | |
audio = AudioSegment.from_wav(audio_path) | |
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration | |
return len(nonsilent_parts) == 0 # If no speech detected | |
# Extract name, email, and phone number from transcribed text | |
def extract_name_email_phone(text): | |
# Regex for basic email and phone number | |
email = re.search(r'\S+@\S+', text) | |
phone = re.search(r'\+?\d{10,15}', text) # Consider different formats for phone numbers | |
name = text.split(' ')[0] # Simplified assumption that name is the first word | |
email = email.group(0) if email else "[email protected]" | |
phone = phone.group(0) if phone else "0000000000" | |
return name, email, phone | |
# Function to create Salesforce record | |
def create_salesforce_record(name, email, phone_number): | |
try: | |
# Create the record in Salesforce | |
customer_login = sf.Customer_Login__c.create({ | |
'Name': name, | |
'Email__c': email, | |
'Phone_Number__c': phone_number | |
}) | |
# Log the response from Salesforce | |
if customer_login.get('id'): | |
print(f"Record created successfully with ID: {customer_login['id']}") | |
return customer_login | |
else: | |
print("Record creation failed: No ID returned") | |
return {"error": "Record creation failed: No ID returned"} | |
except Exception as e: | |
print(f"Error creating Salesforce record: {str(e)}") | |
return {"error": f"Failed to create record in Salesforce: {str(e)}"} | |
def index(): | |
return render_template("index.html") | |
def transcribe(): | |
if "audio" not in request.files: | |
return jsonify({"error": "No audio file provided"}), 400 | |
audio_file = request.files["audio"] | |
input_audio_path = os.path.join("static", "temp_input.wav") | |
output_audio_path = os.path.join("static", "temp.wav") | |
audio_file.save(input_audio_path) | |
try: | |
# Convert to WAV | |
convert_to_wav(input_audio_path, output_audio_path) | |
# Check for silence | |
if is_silent_audio(output_audio_path): | |
return jsonify({"error": "No speech detected. Please try again."}), 400 | |
# Use Whisper ASR model for transcription | |
result = asr_model(output_audio_path, generate_kwargs={"language": "en"}) | |
transcribed_text = result["text"].strip().capitalize() | |
# Extract name, email, and phone number from the transcribed text | |
name, email, phone_number = extract_name_email_phone(transcribed_text) | |
# Create record in Salesforce | |
salesforce_response = create_salesforce_record(name, email, phone_number) | |
# Check if the response contains an error | |
if "error" in salesforce_response: | |
print(f"Error creating record in Salesforce: {salesforce_response['error']}") | |
return jsonify(salesforce_response), 500 | |
print(f"Salesforce Response: {salesforce_response}") | |
return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) | |
except Exception as e: | |
print(f"Error in transcribing or processing: {str(e)}") | |
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 | |
# Start Production Server | |
if __name__ == "__main__": | |
serve(app, host="0.0.0.0", port=7860) | |