voicemenuspe / app.py
DSatishchandra's picture
Update app.py
d472778 verified
raw
history blame
5.56 kB
import torch
from flask import Flask, render_template, request, jsonify
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from simple_salesforce import Salesforce # Import Salesforce connection
import re
from waitress import serve
app = Flask(__name__)
# Salesforce connection using provided credentials
sf_username = '[email protected]'
sf_password = 'Sati@1020'
sf_token = 'sSSjyhInIsUohKpG8sHzty2q'
# Establish Salesforce connection
try:
sf = Salesforce(username=sf_username, password=sf_password, security_token=sf_token)
print("Connected to Salesforce successfully!")
except Exception as e:
print(f"Failed to connect to Salesforce: {str(e)}")
# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1)
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration
return len(nonsilent_parts) == 0 # If no speech detected
# Extract name, email, and phone number from transcribed text
def extract_name_email_phone(text):
# Regex for basic email and phone number
email = re.search(r'\S+@\S+', text)
phone = re.search(r'\+?\d{10,15}', text) # Consider different formats for phone numbers
name = text.split(' ')[0] # Simplified assumption that name is the first word
email = email.group(0) if email else "[email protected]"
phone = phone.group(0) if phone else "0000000000"
return name, email, phone
# Function to create Salesforce record
def create_salesforce_record(name, email, phone_number):
try:
# Create the record in Salesforce
customer_login = sf.Customer_Login__c.create({
'Name': name,
'Email__c': email,
'Phone_Number__c': phone_number
})
# Log the response from Salesforce
if customer_login.get('id'):
print(f"Record created successfully with ID: {customer_login['id']}")
return customer_login
else:
print("Record creation failed: No ID returned")
return {"error": "Record creation failed: No ID returned"}
except Exception as e:
print(f"Error creating Salesforce record: {str(e)}")
return {"error": f"Failed to create record in Salesforce: {str(e)}"}
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input.wav")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert to WAV
convert_to_wav(input_audio_path, output_audio_path)
# Check for silence
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Use Whisper ASR model for transcription
result = asr_model(output_audio_path, generate_kwargs={"language": "en"})
transcribed_text = result["text"].strip().capitalize()
# Extract name, email, and phone number from the transcribed text
name, email, phone_number = extract_name_email_phone(transcribed_text)
# Create record in Salesforce
salesforce_response = create_salesforce_record(name, email, phone_number)
# Check if the response contains an error
if "error" in salesforce_response:
print(f"Error creating record in Salesforce: {salesforce_response['error']}")
return jsonify(salesforce_response), 500
print(f"Salesforce Response: {salesforce_response}")
return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})
except Exception as e:
print(f"Error in transcribing or processing: {str(e)}")
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Start Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)