voicemenuspe / app.py
lokesh341's picture
Update app.py
9061ed1 verified
raw
history blame
2.71 kB
from flask import Flask, render_template, request, jsonify
import os
import torch
import whisper
import re
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from waitress import serve
from gtts import gTTS
app = Flask(__name__)
# Load Whisper Model (Higher Accuracy)
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model = whisper.load_model("medium") # Change to "large" for even better accuracy
# Function to generate audio prompts
def generate_audio_prompt(text, filename):
tts = gTTS(text=text, lang="en")
tts.save(os.path.join("static", filename))
# Generate voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to clean and format transcribed text
def clean_transcription(text):
text = text.lower().strip()
for word, symbol in SYMBOL_MAPPING.items():
text = text.replace(word, symbol)
return text.capitalize()
# Function to detect speech duration (trim silence)
def trim_silence(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
if nonsilent_parts:
start_trim = nonsilent_parts[0][0]
end_trim = nonsilent_parts[-1][1]
trimmed_audio = audio[start_trim:end_trim]
trimmed_audio.export(audio_path, format="wav") # Save trimmed audio
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
audio_path = os.path.join("static", "temp.wav")
audio_file.save(audio_path)
try:
trim_silence(audio_path) # Remove silence before processing
# Transcribe using Whisper
result = whisper_model.transcribe(audio_path, language="english")
transcribed_text = clean_transcription(result["text"])
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Run Waitress Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)