import torch from flask import Flask, render_template, request, jsonify import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from transformers import AutoConfig # Import AutoConfig for the config object import time from waitress import serve from simple_salesforce import Salesforce import requests # Import requests for exception handling app = Flask(__name__) # Use whisper-small for faster processing and better speed device = "cuda" if torch.cuda.is_available() else "cpu" # Create config object to set timeout and other parameters config = AutoConfig.from_pretrained("openai/whisper-small") config.update({"timeout": 60}) # Set timeout to 60 seconds # Function to generate audio prompts def generate_audio_prompt(text, filename): tts = gTTS(text=text, lang="en") tts.save(os.path.join("static", filename)) # Generate required voice prompts prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") # Symbol mapping for proper recognition SYMBOL_MAPPING = { "at the rate": "@", "at": "@", "dot": ".", "underscore": "_", "hash": "#", "plus": "+", "dash": "-", "comma": ",", "space": " " } # Function to convert audio to WAV format def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono audio.export(output_path, format="wav") except Exception as e: print(f"Error: {str(e)}") raise Exception(f"Audio conversion failed: {str(e)}") # Function to check if audio contains actual speech def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration print(f"Detected nonsilent parts: {nonsilent_parts}") return len(nonsilent_parts) == 0 # If no speech detected # Salesforce connection details try: print("Attempting to connect to Salesforce...") sf = Salesforce(username='diggavalli98@gmail.com', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q') print("Connected to Salesforce successfully!") print("User Info:", sf.UserInfo) # Log the user info to verify the connection except Exception as e: print(f"Failed to connect to Salesforce: {str(e)}") # Function to create Salesforce record def create_salesforce_record(name, email, phone_number): try: # Attempt to create a record in Salesforce with correct field API names customer_login = sf.Customer_Login__c.create({ 'Name': name, # Standard field (name) 'Email__c': email, # Custom email field 'Phone_Number__c': phone_number # Custom phone number field }) # Log the full response from Salesforce print(f"Salesforce response: {customer_login}") # Check if the response contains an ID (successful creation) if customer_login.get('id'): print(f"Record created successfully with ID: {customer_login['id']}") return customer_login else: print(f"Record creation failed. Full response: {customer_login}") return {"error": f"Record creation failed. Full response: {customer_login}"} except Exception as e: # Catch and log any exceptions during record creation error_message = str(e) print(f"Error creating Salesforce record: {error_message}") return {"error": f"Failed to create record in Salesforce: {error_message}"} @app.route("/submit", methods=["POST"]) def submit(): data = request.json name = data.get('name') email = data.get('email') phone = data.get('phone') if not name or not email or not phone: return jsonify({'error': 'Missing data'}), 400 try: # Create Salesforce record customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone }) if customer_login.get('id'): return jsonify({'success': True}) else: return jsonify({'error': 'Failed to create record'}), 500 except Exception as e: return jsonify({'error': str(e)}), 500 @app.route("/") def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: print("No audio file provided") return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert to WAV convert_to_wav(input_audio_path, output_audio_path) # Check for silence if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 else: print("Audio contains speech, proceeding with transcription.") # Use Whisper ASR model for transcription result = None retry_attempts = 3 for attempt in range(retry_attempts): try: result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config) print(f"Transcribed text: {result['text']}") break except requests.exceptions.ReadTimeout: print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...") time.sleep(5) if result is None: return jsonify({"error": "Unable to transcribe audio after retries."}), 500 transcribed_text = result["text"].strip().capitalize() print(f"Transcribed text: {transcribed_text}") # Extract name, email, and phone number from the transcribed text parts = transcribed_text.split() name = parts[0] if len(parts) > 0 else "Unknown Name" email = parts[1] if '@' in parts[1] else "unknown@domain.com" phone_number = parts[2] if len(parts) > 2 else "0000000000" print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}") # Create record in Salesforce salesforce_response = create_salesforce_record(name, email, phone_number) # Log the Salesforce response print(f"Salesforce record creation response: {salesforce_response}") # Check if the response contains an error if "error" in salesforce_response: print(f"Error creating record in Salesforce: {salesforce_response['error']}") return jsonify(salesforce_response), 500 # If creation was successful, return the details return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) except Exception as e: print(f"Error in transcribing or processing: {str(e)}") return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start Production Server if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860)