import torch from flask import Flask, render_template, request, jsonify import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from waitress import serve from simple_salesforce import Salesforce app = Flask(__name__) # Use whisper-small for faster processing and better speed device = "cuda" if torch.cuda.is_available() else "cpu" asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1) # Function to generate audio prompts def generate_audio_prompt(text, filename): tts = gTTS(text=text, lang="en") tts.save(os.path.join("static", filename)) # Generate required voice prompts prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") # Symbol mapping for proper recognition SYMBOL_MAPPING = { "at the rate": "@", "at": "@", "dot": ".", "underscore": "_", "hash": "#", "plus": "+", "dash": "-", "comma": ",", "space": " " } # Function to convert audio to WAV format def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono audio.export(output_path, format="wav") except Exception as e: raise Exception(f"Audio conversion failed: {str(e)}") # Function to check if audio contains actual speech def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration return len(nonsilent_parts) == 0 # If no speech detected # Salesforce connection details sf = Salesforce(username='diggavalli98@gmail.com', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q') # Function to create Salesforce record def create_salesforce_record(name, email, phone_number): try: customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone_number }) return customer_login except Exception as e: return {"error": f"Failed to create record in Salesforce: {str(e)}"} @app.route("/") def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert to WAV convert_to_wav(input_audio_path, output_audio_path) # Check for silence if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 # Use Whisper ASR model for transcription result = asr_model(output_audio_path, generate_kwargs={"language": "en"}) transcribed_text = result["text"].strip().capitalize() # Now, let's split the transcribed text into name, email, and phone number (basic example) parts = transcribed_text.split() # This is a simplistic approach; you may need a better parsing mechanism name = parts[0] # Assuming first word is the name email = parts[1] if '@' in parts[1] else "unknown@domain.com" # Very basic email extraction phone_number = parts[2] if len(parts) > 2 else "0000000000" # Basic phone number assumption # Create record in Salesforce salesforce_response = create_salesforce_record(name, email, phone_number) if "error" in salesforce_response: return jsonify(salesforce_response), 500 return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) except Exception as e: return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start Production Server if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860)