File size: 5,888 Bytes
b5fadc4
69067ae
38414f6
7467739
b5fadc4
 
9061ed1
 
37d87bb
0989798
9061ed1
989be25
37d87bb
0197ed3
69067ae
 
1547e12
7494646
0989798
 
 
37d87bb
7494646
37d87bb
 
 
 
 
 
 
 
 
7467739
2d7d678
 
 
 
 
 
37d87bb
2d7d678
7467739
 
 
685e8d2
8994492
 
 
 
 
 
 
 
 
 
 
 
 
 
b5fadc4
 
 
37d87bb
b5fadc4
 
 
9061ed1
8994492
b5fadc4
9061ed1
37d87bb
 
a3e60d6
989be25
 
 
 
 
 
 
f81f6f3
37d87bb
38414f6
 
37d87bb
38414f6
 
 
37d87bb
 
38414f6
c36f3c7
37d87bb
 
 
 
 
 
 
 
 
 
 
 
c36f3c7
37d87bb
efee040
c19d3b6
6d22945
 
 
 
 
 
 
 
 
 
37d87bb
 
 
 
 
 
 
 
6d22945
 
 
 
 
 
 
37d87bb
6d22945
 
 
 
 
 
69067ae
7467739
69067ae
 
7467739
 
69067ae
7467739
8ab530a
69067ae
b5fadc4
 
 
8ab530a
7494646
8994492
b5fadc4
 
8994492
b5fadc4
 
 
8994492
37d87bb
 
 
 
c36f3c7
7494646
9061ed1
0197ed3
8994492
69067ae
97eee54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
from flask import Flask, render_template, request, jsonify
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests

app = Flask(__name__)

# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"

# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})

# Generate required voice prompts
prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

# Function to generate and save audio prompts
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except gtts.tts.gTTSError as e:
        print(f"Error: {e}")
        print("Retrying after 5 seconds...")
        time.sleep(5)
        generate_audio_prompt(text, filename)

for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
    "at the rate": "@",
    "at": "@",
    "dot": ".",
    "underscore": "_",
    "hash": "#",
    "plus": "+",
    "dash": "-",
    "comma": ",",
    "space": " "
}

# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)
        audio.export(output_path, format="wav")
    except Exception as e:
        raise Exception(f"Audio conversion failed: {str(e)}")

# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
    return len(nonsilent_parts) == 0

# Salesforce connection details
try:
    print("Attempting to connect to Salesforce...")
    sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
    print("Connected to Salesforce successfully!")
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")

# Function to handle login & registration in Salesforce
@app.route('/login', methods=['POST'])
def login():
    data = request.json
    email = data.get('email')
    phone_number = data.get('phone_number')

    if not email or not phone_number:
        return jsonify({'error': 'Missing email or phone number'}), 400

    try:
        # Check if user already exists
        query = f"SELECT Id, Name FROM Customer_Login__c WHERE Email__c = '{email}' AND Phone_Number__c = '{phone_number}' LIMIT 1"
        result = sf.query(query)

        if result['totalSize'] > 0:
            user_data = result['records'][0]
            return jsonify({'success': True, 'message': 'Login successful', 'user_id': user_data['Id'], 'name': user_data['Name']}), 200
        else:
            return jsonify({'error': 'Invalid email or phone number. User not found'}), 401

    except requests.exceptions.RequestException as req_error:
        return jsonify({'error': f'Salesforce connection error: {str(req_error)}'}), 500
    except Exception as e:
        return jsonify({'error': f'Unexpected error: {str(e)}'}), 500

@app.route("/submit", methods=["POST"])
def submit():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone = data.get('phone')

    if not name or not email or not phone:
        return jsonify({'error': 'Missing data'}), 400

    try:
        # Check if user already exists
        query = f"SELECT Id FROM Customer_Login__c WHERE Email__c = '{email}' AND Phone_Number__c = '{phone}' LIMIT 1"
        existing_user = sf.query(query)

        if existing_user['totalSize'] > 0:
            return jsonify({'error': 'User already exists'}), 409  # Conflict

        # Create new user
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone
        })

        if customer_login.get('id'):
            return jsonify({'success': True, 'user_id': customer_login['id']}), 200
        else:
            return jsonify({'error': 'Failed to create record'}), 500

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route("/")
def index():
    return render_template("index.html")

@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        # Convert to WAV
        convert_to_wav(input_audio_path, output_audio_path)

        # Check for silence
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400

        # Use Whisper ASR model for transcription
        result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
        transcribed_text = result(output_audio_path)["text"].strip().capitalize()

        return jsonify({"text": transcribed_text})

    except Exception as e:
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# Start Production Server
if __name__ == "__main__":
    serve(app, host="0.0.0.0", port=7860)