import torch from flask import Flask, render_template, request, jsonify import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from waitress import serve app = Flask(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1) def generate_audio_prompt(text, filename): tts = gTTS(text=text, lang="en") tts.save(os.path.join("static", filename)) prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") SYMBOL_MAPPING = { "at the rate": "@", "at": "@", "dot": ".", "underscore": "_", "hash": "#", "plus": "+", "dash": "-", "comma": ",", "space": "" } def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) audio.export(output_path, format="wav") except Exception as e: raise Exception(f"Audio conversion failed: {str(e)}") def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) return len(nonsilent_parts) == 0 @app.route("/") def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: convert_to_wav(input_audio_path, output_audio_path) if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 result = asr_model(output_audio_path, generate_kwargs={"language": "en"}) transcribed_text = result["text"].strip() return jsonify({"text": transcribed_text}) except Exception as e: return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860)