File size: 20,668 Bytes
5f59ba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
"""
Lindenmayer System (L-system) with personal customizations
See also
https://en.wikipedia.org/wiki/L-system
https://onlinemathtools.com/l-system-generator
"""
import io
import math
from collections import deque
from bokeh.plotting import figure, show, output_file
from bokeh.io import export_png, export_svgs
from bokeh.io.export import get_screenshot_as_png
from loguru import logger
from scipy.spatial.transform import Rotation
import attrs as at
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import plotly.graph_objects as go
import PIL.Image as pimage
@at.define
class Config: # pylint: disable=too-few-public-methods
"""
Configuration of the important active characters
"""
reserved: str = ':; ' # reserved characters
color: str = '.'
move_lifted_pen: str = 'UVW'
move_angle_init: str = '_'
move: str = 'ABCDEFGHIJKLNOQRST' # M and P are reserved for 3d rotations
move_up_3d: str = '⇧'
move_down_3d: str = '⇩'
r3d_1_plus: str = 'p' # Axis of rotation : "X"
r3d_1_minus: str = 'm'
r3d_2_plus: str = 'P' # Axis of rotation : "Y"
r3d_2_minus: str = 'M'
r3d_all: str = at.field(init=False)
move_multi: str = at.field(init=False)
move_all: str = at.field(init=False)
delta_add: str = 'u'
delta_sub: str = 'v'
outer_repetition: str = '#'
outer_repetition_max: int = 100
skipped: str = ''
total_skipped: str = at.field(init=False) # all skipped characters
def __attrs_post_init__(self):
self.move_multi = self.move.lower()
self.move_all = self.color + self.move_lifted_pen + self.move_angle_init + self.move_multi + self.move
self.total_skipped = ' ' + self.skipped
self.r3d_all = self.r3d_1_plus + self.r3d_1_minus + self.r3d_2_plus + self.r3d_2_minus
class Lsystc:
"""
Classic L-System with few customizations
"""
def __init__(self, config: Config, axiom: str, rules: list[tuple[str, str]], nbiter: int,
dev_ini: bool = True, verbose: bool = False) -> None:
self.config = config
self.axiom = axiom
self.rules = rules
self.nbiter = nbiter
self.dev_ini = dev_ini
self.verbose = verbose
self.dev = ''
self.turt = []
self.dimension = 2
self.rotation_3d_done = False
self.mobile_vectors: list[np.array] = [np.array([1.0, 0.0, 0.0]),
np.array([0.0, 1.0, 0.0]),
np.array([0.0, 0.0, 1.0])]
self.log('info', f"Axiom: {self.axiom:.50} ; Rules : {self.rules} ; Nb iterations : {self.nbiter}")
if self.dev_ini:
self.develop()
self.log('info', f"Axiom: {self.axiom:.50} ; Rules : {self.rules} ; "
f"Nb iterations : {self.nbiter} Expanded value : {self.dev[:50]+'...'} ; After")
@staticmethod
def apply_rot(rot: Rotation, vec: np.array) -> np.array:
"""
Apply a rotation on a vector
:param rot: rotation to apply
:param vec: concerned vector
:return: rotated vector
"""
return rot.apply(vec).round(decimals=6)
@staticmethod
def dev_unit(source: str, rules: list[tuple[str, str]]) -> str:
"""
Develop source with rules
"""
result = source
position = 0
lreg = None
while True:
# The leftmost usable rule is applied
newpos = None
for lr, regle in enumerate(rules):
lpos = result.find(regle[0], position)
if lpos >= 0:
if newpos is None or lpos < newpos:
newpos = lpos
lreg = lr
if newpos is None:
break
result = result[0:newpos] + result[newpos:].replace(rules[lreg][0], rules[lreg][1], 1)
position = newpos + len(rules[lreg][1])
return result
@staticmethod
def color_from_map(name: str, index: int) -> tuple[int, int, int]:
"""
:param name: name of the discrete colormap (matplotlib source) to be used
:param index: index of the color in the map
:return: tuple (red, green, blue)
"""
r, g, b = mpl.colormaps[name].colors[index]
r, g, b = int(r * 255), int(g * 255), int(b * 255)
return r, g, b
def log(self, ltype: str, message: str, *args, **kwargs):
"""
Log a message with consideration for the verbosity property
:param ltype: type of log
:param message: message
:return: None
"""
if self.verbose:
func_dict = {'info': logger.info, 'debug': logger.debug, 'warning': logger.warning,
'error': logger.error, 'exception': logger.exception}
func = func_dict.get(ltype)
if not func:
raise ValueError(f"This type of log is unknown : {ltype}")
func(message, *args, **kwargs)
def new_pos(self, ax: float, ay: float, az: float, astep: float, aangle: float) -> tuple[float, float, float]:
"""
New position from (ax, ay, az) with the use of astep and aangle
The angle is not used if a 3D rotation has been done
:param ax: 1st coordinate of starting point
:param ay: 2nd coordinate of starting point
:param az: 3rd coordinate of starting point
:param astep: step size
:param aangle: step angle
"""
if self.rotation_3d_done:
forward_vector = self.mobile_vectors[0]
lx = ax + astep * forward_vector[0]
ly = ay + astep * forward_vector[1]
lz = az + astep * forward_vector[2]
return lx, ly, lz
else:
if aangle == 0.0:
lx = ax + astep
ly = ay
elif aangle == 90.0:
lx = ax
ly = ay + astep
elif aangle == 180.0:
lx = ax - astep
ly = ay
elif aangle == 270.0:
lx = ax
ly = ay - astep
else:
lx = ax + astep * math.cos(math.radians(aangle))
ly = ay + astep * math.sin(math.radians(aangle))
return lx, ly, az
def develop(self) -> None:
"""
Develop self.axiom from the list of rules (self.rules) with nbiter iterations
A rule is a couple (source, target) where source can be replaced by target
Example of Koch :
axiom = 'F'
rules = [('F','F+F-F-F+F')]
Example with 2 rules :
axiom = 'A'
rules = [('A','AB'),('B','A')]
"""
result = self.axiom
if self.rules:
for _ in range(self.nbiter):
result = self.dev_unit(result, self.rules)
self.dev = result
def init_3d(self, angle: float) -> None:
"""
Initialization of the 3D and of the mobile vectors
:param angle: current angle
:return: None
"""
self.rotation_3d_done = True
self.dimension = 3
vec_x = self.mobile_vectors[0]
vec_y = self.mobile_vectors[1]
axis = self.mobile_vectors[2]
rot = Rotation.from_rotvec(angle * axis, degrees=True)
new_vec_x = self.apply_rot(rot, vec_x)
new_vec_y = self.apply_rot(rot, vec_y)
self.mobile_vectors[0] = new_vec_x
self.mobile_vectors[1] = new_vec_y
def rotate_3d(self, rtype: str, rangle: float) -> None:
"""
Apply a 3D rotation on the mobile vectors
:param rtype: type of rotation
:param rangle: angle of rotation
:return: None
"""
vec_x = self.mobile_vectors[0]
vec_y = self.mobile_vectors[1]
vec_z = self.mobile_vectors[2]
rsign = 1 if rtype in self.config.r3d_1_plus + self.config.r3d_2_plus + '+>' else -1
if rtype in self.config.r3d_1_minus + self.config.r3d_1_plus:
# Axis of rotation is "X"
axis = vec_x
rot = Rotation.from_rotvec(rsign * rangle * axis, degrees=True)
new_vec_x = axis
new_vec_y = self.apply_rot(rot, vec_y)
new_vec_z = self.apply_rot(rot, vec_z)
elif rtype in self.config.r3d_2_minus + self.config.r3d_2_plus:
# Axis of rotation is "Y"
axis = vec_y
rot = Rotation.from_rotvec(rsign * rangle * axis, degrees=True)
new_vec_x = self.apply_rot(rot, vec_x)
new_vec_y = axis
new_vec_z = self.apply_rot(rot, vec_z)
else:
# Axis of rotation is "Z" ( +->< )
axis = vec_z
rot = Rotation.from_rotvec(rsign * rangle * axis, degrees=True)
new_vec_x = self.apply_rot(rot, vec_x)
new_vec_y = self.apply_rot(rot, vec_y)
new_vec_z = axis
self.mobile_vectors[0] = new_vec_x
self.mobile_vectors[1] = new_vec_y
self.mobile_vectors[2] = new_vec_z
def turtle(self, step: float = 10.0, angle: float = 90.0, angleinit: float = 0.0, coeff: float = 1.1,
angle2: float = 10.0, color_length: int = 3, color_map: str = "Set1",
delta: float = 0.1) -> None:
"""
Develop self.dev in [(lx, ly, lz, color),...] where lx, ly, lz are lists of positions
The result goes to self.turt
:param step: the turtle step size
:param angle: angle of rotation (in degrees) ( + - )
:param angleinit: initial angle
:param coeff: magnification or reduction factor for the step ( * / ) and factor for "lowered" characters
:param angle2: 2nd usable angle ( < > )
:param color_length: maximal number of colours
:param color_map: color map to use (matplotlib name)
:param delta: value to add to the step
"""
res = []
stock: list = [] # List of ("point", angle, ...) kept for [] et ()
lix: list[float] = []
liy: list[float] = []
liz: list[float] = []
tx = 0.0
ty = 0.0
tz = 0.0
tstep = step
tangle = angleinit
tsens = 1
color_index = 0
tcouleur = self.color_from_map(color_map, color_index)
nb_iterations: int = 0
stock_outer: deque = deque([(tx, ty, tz, tangle, tcouleur, tstep, self.mobile_vectors)])
while stock_outer:
nb_iterations += 1
if len(lix) > 1:
res.append((lix, liy, liz, tcouleur))
tx, ty, tz, tangle, tcouleur, tstep, self.mobile_vectors = stock_outer.popleft()
lix = [tx]
liy = [ty]
liz = [tz]
for car in self.dev:
if car in self.config.total_skipped:
continue
npos = False
npospos = False
nliste = False
ncolor = False
if car in self.config.move_all:
if car in self.config.color:
ncolor = True # Change of color
else:
ltstep = tstep
if car in self.config.move_multi:
ltstep = tstep * coeff
elif car in self.config.move_angle_init:
tangle = angleinit
ltangle = tangle
tx, ty, tz = self.new_pos(tx, ty, tz, ltstep, ltangle)
# npos true <-> new position with the pen down
npos = car in self.config.move + self.config.move_multi + self.config.move_angle_init
# nliste true <-> new list because of a change of color or a raised pen
nliste = car in self.config.color + self.config.move_lifted_pen
elif car in self.config.move_up_3d or car in self.config.move_down_3d:
npos = True
self.dimension = 3
if car in self.config.move_up_3d:
tz += tstep
else:
tz -= tstep
elif car in '+-><' + self.config.r3d_all:
if self.rotation_3d_done:
if car in '+-' + self.config.r3d_all:
langle = angle
else:
langle = angle2
self.rotate_3d(car, langle * tsens)
else:
if car in '+':
tangle = (tangle + angle * tsens) % 360.0
elif car in '-':
tangle = (tangle - angle * tsens) % 360.0
elif car in '>':
tangle = (tangle + angle2 * tsens) % 360.0
elif car in '<':
tangle = (tangle - angle2 * tsens) % 360.0
else:
# There is a not trivial 3D rotation ( PMpm )
self.init_3d(tangle)
self.rotate_3d(car, angle * tsens)
elif car == '*':
tstep *= coeff
elif car == '/':
tstep /= coeff
elif car in self.config.delta_add:
tstep += delta
elif car in self.config.delta_sub:
tstep -= delta
elif car in '[(':
stock.append((tx, ty, tz, tangle, tcouleur, tstep, self.mobile_vectors))
elif car in '])':
if stock:
tx, ty, tz, tangle, tcouleur, tstep, self.mobile_vectors = stock.pop()
nliste = True # the pen is raised to go back to the stocked position
elif car == '|':
# Single "return" ("round-trip")
npospos = True
elif car == '!':
# Change the sens of rotation
tsens = tsens * -1
elif car in self.config.outer_repetition:
# A new possible item in the "outer stock"
if nb_iterations <= self.config.outer_repetition_max:
stock_outer.append((tx, ty, tz, tangle, tcouleur, tstep, self.mobile_vectors))
else:
continue
# Take into account the read character
# ------------------------------------
if nliste:
# New list because of new color or lifted pen
if len(lix) > 1:
res.append((lix, liy, liz, tcouleur))
if ncolor:
# Change of color
color_index = (color_index + 1) % color_length
tcouleur = self.color_from_map(color_map, color_index)
lix = [tx]
liy = [ty]
liz = [tz]
elif npos:
# New position and no new list
lix.append(tx)
liy.append(ty)
liz.append(tz)
elif npospos:
# 2 new positions for a "round-trip"
tnx, tny, tnz = self.new_pos(tx, ty, tz, tstep, tangle)
lix.append(tnx)
liy.append(tny)
liz.append(tnz)
lix.append(tx)
liy.append(ty)
liz.append(tz)
if len(lix) > 1:
# Finally, append the last points
res.append((lix, liy, liz, tcouleur))
self.turt = res
def render(self, show_type: str = 'matplot', image_destination: str = 'images_out/',
save_files: bool = True, show_more: bool = False, show_3d: bool = False,
return_type: str = ''):
"""
Render self.turt using a specific show type
:param show_type: 'matplot' or 'bokeh'
:param image_destination: folder for images backup
:param save_files: True to save files
:param show_more: True to show with specific show_type
:param show_3d: True to show 3D (implemented with plotly only)
:param return_type: '', 'image' or 'figure'
:return: None or an image if return_type is 'image' or a figure if return_type is 'figure'
"""
if show_type == 'matplot':
fig, ax = plt.subplots()
for (lx, ly, _, coul) in self.turt:
r, g, b = coul
ax.plot(lx, ly, color=(r / 255., g / 255., b / 255., 1.0))
ax.set_axis_off()
ax.grid(visible=False)
if show_more:
plt.show()
if save_files:
fig.savefig(f'{image_destination}plot_{show_type}.png', bbox_inches='tight')
fig.savefig(f'{image_destination}plot_{show_type}.svg', bbox_inches='tight')
if return_type == 'image':
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
fig.canvas.draw()
# Return an image : PIL.Image
return pimage.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
if return_type == 'figure':
return fig
elif show_type == 'bokeh':
if save_files:
output_file(f'{image_destination}lines_{show_type}.html')
fig = figure(title="LSyst", x_axis_label='x', y_axis_label='y', width=800, height=800)
for (lx, ly, _, coul) in self.turt:
cr, cg, cb = coul
fig.line(lx, ly, line_color=(cr, cg, cb))
fig.xgrid.grid_line_color = None
fig.ygrid.grid_line_color = None
if show_more:
_ = show(fig)
if save_files:
export_png(fig, filename=f'{image_destination}plot_{show_type}.png')
fig.output_backend = "svg"
export_svgs(fig, filename=f'{image_destination}plot_{show_type}.svg')
if return_type == 'image':
fig.toolbar_location = None
fig.axis.visible = False
fig.title = ""
# Return an image : PIL.Image
return get_screenshot_as_png(fig)
if return_type == 'figure':
return fig
elif show_type == 'plotly':
fig = go.Figure()
axis_dict = {
"showline": True,
"showgrid": False,
"showticklabels": True,
"zeroline": False,
"ticks": 'outside',
}
index = 0
if self.dimension == 2 or not show_3d:
fig.update_yaxes(
scaleanchor="x",
scaleratio=1,
)
for (lx, ly, lz, coul) in self.turt:
index += 1
cr, cg, cb = coul
fig.add_trace(go.Scatter(x=lx, y=ly, mode='lines',
name=f"t{index}", line={"color": f'rgb({cr},{cg},{cb})', "width": 1}))
else:
# 3D
for (lx, ly, lz, coul) in self.turt:
index += 1
cr, cg, cb = coul
fig.add_trace(go.Scatter3d(x=lx, y=ly, z=lz, mode='lines',
name=f"t{index}", line={"color": f'rgb({cr},{cg},{cb})', "width": 1}))
fig.update_layout(
xaxis=axis_dict,
yaxis=axis_dict,
autosize=True,
showlegend=False
)
if show_more:
fig.show()
if save_files:
fig.write_image(f'{image_destination}plot_{show_type}.png')
fig.write_image(f'{image_destination}plot_{show_type}.svg')
if return_type == 'image':
fig_bytes = fig.to_image(format="png")
buf = io.BytesIO(fig_bytes)
# Return an image : PIL.Image
return pimage.open(buf)
if return_type == 'figure':
return fig
else:
raise ValueError("The given show_type is not correct")
|