File size: 16,981 Bytes
08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 08eec19 102a6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from fastapi import FastAPI, Request, Depends, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import StreamingResponse
from fastapi.background import BackgroundTasks
import requests
from curl_cffi import requests as cffi_requests # 保留这个,用于获取cookies
import uuid
import json
import time
from typing import Optional
import asyncio
import base64
import tempfile
import os
import re
app = FastAPI()
security = HTTPBearer()
# OpenAI API Key 配置,可以通过环境变量覆盖
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None) # 设置为 None 表示不校验,或设置具体值,如"sk-proj-1234567890"
# 修改全局数据存储
global_data = {
"cookie": None,
"cookies": None,
"last_update": 0
}
def get_cookie():
try:
# 使用 curl_cffi 发送请求
response = cffi_requests.get(
'https://chat.akash.network/',
impersonate="chrome110",
timeout=30
)
# 获取所有 cookies
cookies = response.cookies.items()
if cookies:
cookie_str = '; '.join([f'{k}={v}' for k, v in cookies])
global_data["cookie"] = cookie_str
global_data["last_update"] = time.time()
print(f"Got cookies: {cookie_str}")
return cookie_str
except Exception as e:
print(f"Error fetching cookie: {e}")
return None
async def check_and_update_cookie(background_tasks: BackgroundTasks):
# 如果cookie超过30分钟,在后台更新
if time.time() - global_data["last_update"] > 1800:
background_tasks.add_task(get_cookie)
@app.on_event("startup")
async def startup_event():
get_cookie()
async def get_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
token = credentials.credentials
# 如果设置了 OPENAI_API_KEY,则需要验证
if OPENAI_API_KEY is not None:
# 去掉 Bearer 前缀后再比较
clean_token = token.replace("Bearer ", "") if token.startswith("Bearer ") else token
if clean_token != OPENAI_API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key"
)
# 返回去掉 "Bearer " 前缀的token
return token.replace("Bearer ", "") if token.startswith("Bearer ") else token
async def check_image_status(session: requests.Session, job_id: str, headers: dict) -> Optional[str]:
"""检查图片生成状态并获取生成的图片"""
max_retries = 30
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1}/{max_retries} for job {job_id}")
response = session.get(
f'https://chat.akash.network/api/image-status?ids={job_id}',
headers=headers
)
print(f"Status response code: {response.status_code}")
status_data = response.json()
if status_data and isinstance(status_data, list) and len(status_data) > 0:
job_info = status_data[0]
status = job_info.get('status')
print(f"Job status: {status}")
# 只有当状态为 completed 时才处理结果
if status == "completed":
result = job_info.get("result")
if result and not result.startswith("Failed"):
print("Got valid result, attempting upload...")
image_url = await upload_to_xinyew(result, job_id)
if image_url:
print(f"Successfully uploaded image: {image_url}")
return image_url
print("Image upload failed")
return None
print("Invalid result received")
return None
elif status == "failed":
print(f"Job {job_id} failed")
return None
# 如果状态是其他(如 pending),继续等待
await asyncio.sleep(1)
continue
except Exception as e:
print(f"Error checking status: {e}")
return None
print(f"Timeout waiting for job {job_id}")
return None
@app.get("/")
async def health_check():
"""Health check endpoint"""
return {"status": "ok"}
@app.post("/v1/chat/completions")
async def chat_completions(
request: Request,
api_key: str = Depends(get_api_key)
):
try:
data = await request.json()
print(f"Chat request data: {data}")
chat_id = str(uuid.uuid4()).replace('-', '')[:16]
akash_data = {
"id": chat_id,
"messages": data.get('messages', []),
"model": data.get('model', "DeepSeek-R1"),
"system": data.get('system_message', "You are a helpful assistant."),
"temperature": data.get('temperature', 0.6),
"topP": data.get('top_p', 0.95)
}
headers = {
"Content-Type": "application/json",
"Cookie": f"session_token={api_key}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"Accept": "*/*",
"Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7",
"Accept-Encoding": "gzip, deflate, br",
"Origin": "https://chat.akash.network",
"Referer": "https://chat.akash.network/",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-origin",
"Connection": "keep-alive",
"Priority": "u=1, i"
}
print(f"Sending request to Akash with headers: {headers}")
print(f"Request data: {akash_data}")
with requests.Session() as session:
response = session.post(
'https://chat.akash.network/api/chat',
json=akash_data,
headers=headers,
stream=True
)
def generate():
content_buffer = ""
for line in response.iter_lines():
if not line:
continue
try:
line_str = line.decode('utf-8')
msg_type, msg_data = line_str.split(':', 1)
if msg_type == '0':
if msg_data.startswith('"') and msg_data.endswith('"'):
msg_data = msg_data.replace('\\"', '"')
msg_data = msg_data[1:-1]
msg_data = msg_data.replace("\\n", "\n")
# 在处理消息时先判断模型类型
if data.get('model') == 'AkashGen' and "<image_generation>" in msg_data:
# 图片生成模型的特殊处理
async def process_and_send():
end_msg = await process_image_generation(msg_data, session, headers, chat_id)
if end_msg:
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'),
"choices": [{
"delta": {"content": end_msg},
"index": 0,
"finish_reason": None
}]
}
return f"data: {json.dumps(chunk)}\n\n"
return None
# 创建新的事件循环
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(process_and_send())
finally:
loop.close()
if result:
yield result
continue
content_buffer += msg_data
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'),
"choices": [{
"delta": {"content": msg_data},
"index": 0,
"finish_reason": None
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
elif msg_type in ['e', 'd']:
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'), # 使用请求中指定的模型
"choices": [{
"delta": {},
"index": 0,
"finish_reason": "stop"
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
break
except Exception as e:
print(f"Error processing line: {e}")
continue
return StreamingResponse(
generate(),
media_type='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'text/event-stream'
}
)
except Exception as e:
return {"error": str(e)}
@app.get("/v1/models")
async def list_models(api_key: str = Depends(get_api_key)):
try:
headers = {
"Content-Type": "application/json",
"Cookie": f"session_token={api_key}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"Accept": "*/*",
"Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7",
"Accept-Encoding": "gzip, deflate, br",
"Origin": "https://chat.akash.network",
"Referer": "https://chat.akash.network/",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-origin",
"Connection": "keep-alive"
}
response = requests.get(
'https://chat.akash.network/api/models',
headers=headers
)
akash_response = response.json()
# 转换为标准 OpenAI 格式
openai_models = {
"object": "list",
"data": [
{
"id": model["id"],
"object": "model",
"created": int(time.time()),
"owned_by": "akash",
"permission": [{
"id": "modelperm-" + model["id"],
"object": "model_permission",
"created": int(time.time()),
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}]
} for model in akash_response.get("models", [])
]
}
return openai_models
except Exception as e:
print(f"Error in list_models: {e}")
return {"error": str(e)}
async def upload_to_xinyew(image_base64: str, job_id: str) -> Optional[str]:
"""上传图片到新野图床并返回URL"""
try:
print(f"\n=== Starting image upload for job {job_id} ===")
print(f"Base64 data length: {len(image_base64)}")
# 解码base64图片数据
try:
image_data = base64.b64decode(image_base64.split(',')[1] if ',' in image_base64 else image_base64)
print(f"Decoded image data length: {len(image_data)} bytes")
except Exception as e:
print(f"Error decoding base64: {e}")
print(f"First 100 chars of base64: {image_base64[:100]}...")
return None
# 创建临时文件
with tempfile.NamedTemporaryFile(suffix='.jpeg', delete=False) as temp_file:
temp_file.write(image_data)
temp_file_path = temp_file.name
try:
filename = f"{job_id}.jpeg"
print(f"Using filename: {filename}")
# 准备文件上传
files = {
'file': (filename, open(temp_file_path, 'rb'), 'image/jpeg')
}
print("Sending request to xinyew.cn...")
response = requests.post(
'https://api.xinyew.cn/api/jdtc',
files=files,
timeout=30
)
print(f"Upload response status: {response.status_code}")
if response.status_code == 200:
result = response.json()
print(f"Upload response: {result}")
if result.get('errno') == 0:
url = result.get('data', {}).get('url')
if url:
print(f"Successfully got image URL: {url}")
return url
print("No URL in response data")
else:
print(f"Upload failed: {result.get('message')}")
else:
print(f"Upload failed with status {response.status_code}")
print(f"Response content: {response.text}")
return None
finally:
# 清理临时文件
try:
os.unlink(temp_file_path)
except Exception as e:
print(f"Error removing temp file: {e}")
except Exception as e:
print(f"Error in upload_to_xinyew: {e}")
import traceback
print(traceback.format_exc())
return None
async def process_image_generation(msg_data: str, session: requests.Session, headers: dict, chat_id: str) -> str:
"""处理图片生成的逻辑"""
match = re.search(r"jobId='([^']+)' prompt='([^']+)' negative='([^']*)'", msg_data)
if match:
job_id, prompt, negative = match.groups()
print(f"Starting image generation process for job_id: {job_id}")
# 发送思考开始的消息
start_time = time.time()
end_msg = "<think>\n"
end_msg += "🎨 Generating image...\n\n"
end_msg += f"Prompt: {prompt}\n"
# 检查图片状态和上传
result = await check_image_status(session, job_id, headers)
# 发送结束消息
elapsed_time = time.time() - start_time
end_msg += f"\n🤔 Thinking for {elapsed_time:.1f}s...\n"
end_msg += "</think>\n\n"
if result: # result 现在是上传后的图片URL
end_msg += f""
else:
end_msg += "*Image generation or upload failed.*\n"
return end_msg
return ""
if __name__ == '__main__':
import uvicorn
uvicorn.run(app, host='0.0.0.0', port=9000) |