File size: 16,683 Bytes
08eec19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from fastapi import FastAPI, Request, Depends, HTTPException
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import StreamingResponse
from fastapi.background import BackgroundTasks
import requests
import uuid
import json
import time
from typing import Optional
import asyncio
from curl_cffi import requests as cffi_requests
import re
import os
app = FastAPI()
security = HTTPBearer()
# OpenAI API Key 配置,可以通过环境变量覆盖
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None) # 设置为 None 表示不校验,或设置具体值,如"sk-proj-1234567890"
# 修改全局数据存储
global_data = {
"cookie": None,
"cookies": None,
"last_update": 0
}
def get_cookie():
try:
# 使用 curl_cffi 发送请求
response = cffi_requests.get(
'https://chat.akash.network/',
impersonate="chrome110",
timeout=30
)
# 获取所有 cookies
cookies = response.cookies.items()
if cookies:
cookie_str = '; '.join([f'{k}={v}' for k, v in cookies])
global_data["cookie"] = cookie_str
global_data["last_update"] = time.time()
print(f"Got cookies: {cookie_str}")
return cookie_str
except Exception as e:
print(f"Error fetching cookie: {e}")
return None
async def check_and_update_cookie(background_tasks: BackgroundTasks):
# 如果cookie超过30分钟,在后台更新
if time.time() - global_data["last_update"] > 1800:
background_tasks.add_task(get_cookie)
@app.on_event("startup")
async def startup_event():
get_cookie()
async def get_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
token = credentials.credentials
# 如果设置了 OPENAI_API_KEY,则需要验证
if OPENAI_API_KEY is not None:
# 去掉 Bearer 前缀后再比较
clean_token = token.replace("Bearer ", "") if token.startswith("Bearer ") else token
if clean_token != OPENAI_API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key"
)
# 返回去掉 "Bearer " 前缀的token
return token.replace("Bearer ", "") if token.startswith("Bearer ") else token
async def check_image_status(session: requests.Session, job_id: str, headers: dict) -> Optional[str]:
"""
检查图片生成状态并获取生成的图片
Args:
session: 请求会话
job_id: 任务ID
headers: 请求头
Returns:
Optional[str]: base64格式的图片数据,如果生成失败则返回None
"""
max_retries = 30 # 最多等待30秒
for _ in range(max_retries):
try:
response = session.get(
f'https://chat.akash.network/api/image-status?ids={job_id}',
headers=headers
)
status_data = response.json()
if status_data and isinstance(status_data, list) and len(status_data) > 0:
job_info = status_data[0]
# 如果result不为空,说明图片已生成
if job_info.get("result"):
return job_info["result"] # 直接返回base64数据
# 如果状态是失败,则停止等待
if job_info.get("status") == "failed":
print(f"Image generation failed for job {job_id}")
return None
except Exception as e:
print(f"Error checking image status: {e}")
await asyncio.sleep(1) # 等待1秒后重试
print(f"Timeout waiting for image generation job {job_id}")
return None
@app.get("/")
async def health_check():
"""Health check endpoint"""
return {"status": "ok"}
@app.post("/v1/chat/completions")
async def chat_completions(
request: Request,
api_key: str = Depends(get_api_key)
):
try:
data = await request.json()
print(f"Chat request data: {data}")
chat_id = str(uuid.uuid4()).replace('-', '')[:16]
akash_data = {
"id": chat_id,
"messages": data.get('messages', []),
"model": data.get('model', "DeepSeek-R1"),
"system": data.get('system_message', "You are a helpful assistant."),
"temperature": data.get('temperature', 0.6),
"topP": data.get('top_p', 0.95)
}
headers = {
"Content-Type": "application/json",
"Cookie": f"session_token={api_key}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"Accept": "*/*",
"Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7",
"Accept-Encoding": "gzip, deflate, br",
"Origin": "https://chat.akash.network",
"Referer": "https://chat.akash.network/",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-origin",
"Connection": "keep-alive",
"Priority": "u=1, i"
}
print(f"Sending request to Akash with headers: {headers}")
print(f"Request data: {akash_data}")
with requests.Session() as session:
response = session.post(
'https://chat.akash.network/api/chat',
json=akash_data,
headers=headers,
stream=True
)
def generate():
content_buffer = ""
for line in response.iter_lines():
if not line:
continue
try:
line_str = line.decode('utf-8')
msg_type, msg_data = line_str.split(':', 1)
if msg_type == '0':
if msg_data.startswith('"') and msg_data.endswith('"'):
msg_data = msg_data.replace('\\"', '"')
msg_data = msg_data[1:-1]
msg_data = msg_data.replace("\\n", "\n")
# 在处理消息时先判断模型类型
if data.get('model') == 'AkashGen' and "<image_generation>" in msg_data:
# 图片生成模型的特殊处理
match = re.search(r"jobId='([^']+)' prompt='([^']+)' negative='([^']*)'", msg_data)
if match:
job_id, prompt, negative = match.groups()
print(f"Starting image generation process for job_id: {job_id}")
# 立即发送思考开始的消息
start_time = time.time()
think_msg = "<think>\n"
think_msg += "🎨 Generating image...\n\n"
think_msg += f"Prompt: {prompt}\n"
# 发送思考开始消息 (使用标准 OpenAI 格式)
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'), # 使用请求中指定的模型
"choices": [{
"delta": {"content": think_msg},
"index": 0,
"finish_reason": None
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
# 同步方式检查图片状态
max_retries = 10
retry_interval = 3
result = None
for attempt in range(max_retries):
try:
print(f"\nAttempt {attempt + 1}/{max_retries} for job {job_id}")
status_response = cffi_requests.get(
f'https://chat.akash.network/api/image-status?ids={job_id}',
headers=headers,
impersonate="chrome110"
)
print(f"Status response code: {status_response.status_code}")
status_data = status_response.json()
print(f"Status data: {json.dumps(status_data, indent=2)}")
if status_data and isinstance(status_data, list) and len(status_data) > 0:
job_info = status_data[0]
print(f"Job status: {job_info.get('status')}")
if job_info.get("result"):
result = job_info['result']
if result and not result.startswith("Failed"):
break
elif job_info.get("status") == "failed":
result = None
break
except Exception as e:
print(f"Error checking status: {e}")
if attempt < max_retries - 1:
time.sleep(retry_interval)
# 发送结束消息
elapsed_time = time.time() - start_time
end_msg = f"\n🤔 Thinking for {elapsed_time:.1f}s...\n"
end_msg += "</think>\n\n"
if result and not result.startswith("Failed"):
end_msg += f""
else:
end_msg += "*Image generation failed or timed out.*\n"
# 发送结束消息 (使用标准 OpenAI 格式)
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'), # 使用请求中指定的模型
"choices": [{
"delta": {"content": end_msg},
"index": 0,
"finish_reason": None
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
continue
content_buffer += msg_data
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'),
"choices": [{
"delta": {"content": msg_data},
"index": 0,
"finish_reason": None
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
elif msg_type in ['e', 'd']:
chunk = {
"id": f"chatcmpl-{chat_id}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": data.get('model'), # 使用请求中指定的模型
"choices": [{
"delta": {},
"index": 0,
"finish_reason": "stop"
}]
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
break
except Exception as e:
print(f"Error processing line: {e}")
continue
return StreamingResponse(
generate(),
media_type='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive',
'Content-Type': 'text/event-stream'
}
)
except Exception as e:
return {"error": str(e)}
@app.get("/v1/models")
async def list_models(api_key: str = Depends(get_api_key)):
try:
headers = {
"Content-Type": "application/json",
"Cookie": f"session_token={api_key}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"Accept": "*/*",
"Accept-Language": "zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7",
"Accept-Encoding": "gzip, deflate, br",
"Origin": "https://chat.akash.network",
"Referer": "https://chat.akash.network/",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-origin",
"Connection": "keep-alive"
}
response = requests.get(
'https://chat.akash.network/api/models',
headers=headers
)
akash_response = response.json()
# 转换为标准 OpenAI 格式
openai_models = {
"object": "list",
"data": [
{
"id": model["id"],
"object": "model",
"created": int(time.time()),
"owned_by": "akash",
"permission": [{
"id": "modelperm-" + model["id"],
"object": "model_permission",
"created": int(time.time()),
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}]
} for model in akash_response.get("models", [])
]
}
return openai_models
except Exception as e:
print(f"Error in list_models: {e}")
return {"error": str(e)}
if __name__ == '__main__':
import uvicorn
uvicorn.run(app, host='0.0.0.0', port=9000) |