import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets from torch.utils.data import DataLoader import segmentation_models_pytorch as smp # Define U-Net model for cloth fold segmentation class ClothFoldUNet(nn.Module): def __init__(self): super(ClothFoldUNet, self).__init__() self.model = smp.Unet( encoder_name="resnet34", # Pre-trained backbone encoder_weights="imagenet", in_channels=3, classes=1, # Single channel output for segmentation ) def forward(self, x): return self.model(x) # Load dataset (placeholder, replace with real dataset) def get_dataloader(batch_size=8): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), ]) dataset = datasets.FakeData(transform=transform) return DataLoader(dataset, batch_size=batch_size, shuffle=True) # Train function def train_model(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ClothFoldUNet().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-4) criterion = nn.BCEWithLogitsLoss() dataloader = get_dataloader() for epoch in range(10): # Placeholder epoch count for images, _ in dataloader: images = images.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, torch.ones_like(outputs)) # Placeholder loss loss.backward() optimizer.step() print(f"Epoch {epoch+1}: Loss {loss.item():.4f}") # Run training if __name__ == "__main__": train_model()