Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torchvision import transforms, datasets | |
from torch.utils.data import DataLoader | |
import segmentation_models_pytorch as smp | |
# Define U-Net model for cloth fold segmentation | |
class ClothFoldUNet(nn.Module): | |
def __init__(self): | |
super(ClothFoldUNet, self).__init__() | |
self.model = smp.Unet( | |
encoder_name="resnet34", # Pre-trained backbone | |
encoder_weights="imagenet", | |
in_channels=3, | |
classes=1, # Single channel output for segmentation | |
) | |
def forward(self, x): | |
return self.model(x) | |
# Load dataset (placeholder, replace with real dataset) | |
def get_dataloader(batch_size=8): | |
transform = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
]) | |
dataset = datasets.FakeData(transform=transform) | |
return DataLoader(dataset, batch_size=batch_size, shuffle=True) | |
# Train function | |
def train_model(): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = ClothFoldUNet().to(device) | |
optimizer = optim.Adam(model.parameters(), lr=1e-4) | |
criterion = nn.BCEWithLogitsLoss() | |
dataloader = get_dataloader() | |
for epoch in range(10): # Placeholder epoch count | |
for images, _ in dataloader: | |
images = images.to(device) | |
optimizer.zero_grad() | |
outputs = model(images) | |
loss = criterion(outputs, torch.ones_like(outputs)) # Placeholder loss | |
loss.backward() | |
optimizer.step() | |
print(f"Epoch {epoch+1}: Loss {loss.item():.4f}") | |
# Run training | |
if __name__ == "__main__": | |
train_model() |