Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
import random
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
-
import torch
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
-
|
| 18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
-
|
| 21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 22 |
-
|
| 23 |
-
if randomize_seed:
|
| 24 |
-
seed = random.randint(0, MAX_SEED)
|
| 25 |
-
|
| 26 |
-
generator = torch.Generator().manual_seed(seed)
|
| 27 |
-
|
| 28 |
-
image = pipe(
|
| 29 |
-
prompt = prompt,
|
| 30 |
-
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
-
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
-
height = height,
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
-
|
| 38 |
-
return image
|
| 39 |
|
| 40 |
examples = [
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
-
"
|
| 44 |
]
|
| 45 |
|
| 46 |
css="""
|
|
@@ -50,97 +20,55 @@ css="""
|
|
| 50 |
}
|
| 51 |
"""
|
| 52 |
|
| 53 |
-
if torch.cuda.is_available():
|
| 54 |
-
power_device = "GPU"
|
| 55 |
-
else:
|
| 56 |
-
power_device = "CPU"
|
| 57 |
-
|
| 58 |
with gr.Blocks(css=css) as demo:
|
| 59 |
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
gr.Markdown(f"""
|
| 62 |
-
#
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
""")
|
| 65 |
|
| 66 |
with gr.Row():
|
| 67 |
|
| 68 |
-
|
| 69 |
-
label="
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
container=False,
|
| 74 |
)
|
| 75 |
|
| 76 |
-
run_button = gr.Button("
|
| 77 |
|
| 78 |
-
result = gr.
|
| 79 |
|
| 80 |
-
with gr.Accordion("
|
| 81 |
|
| 82 |
-
|
| 83 |
-
label="
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
visible=False,
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
label="
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
|
| 117 |
-
with gr.Row():
|
| 118 |
-
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
num_inference_steps = gr.Slider(
|
| 128 |
-
label="Number of inference steps",
|
| 129 |
-
minimum=1,
|
| 130 |
-
maximum=12,
|
| 131 |
-
step=1,
|
| 132 |
-
value=2,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
gr.Examples(
|
| 136 |
-
examples
|
| 137 |
-
inputs
|
| 138 |
)
|
| 139 |
|
| 140 |
run_button.click(
|
| 141 |
-
fn
|
| 142 |
-
inputs
|
| 143 |
-
outputs
|
| 144 |
)
|
| 145 |
|
| 146 |
-
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import random
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Example T-shirt mockup generation function (replace with actual implementation)
|
| 5 |
+
def generate_tshirt_mockup(style, color, graphics, text=None):
|
| 6 |
+
# Generate a mockup based on T-shirt style, color, graphics, and optionally text
|
| 7 |
+
mockup = f"Generated T-shirt mockup:\nStyle: {style}\nColor: {color}\nGraphics: {graphics}\nText: {text}" if text else f"Generated T-shirt mockup:\nStyle: {style}\nColor: {color}\nGraphics: {graphics}"
|
| 8 |
+
return mockup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
examples = [
|
| 11 |
+
"Casual T-shirt, Blue, with abstract art",
|
| 12 |
+
"Formal T-shirt, White, with logo",
|
| 13 |
+
"Sports T-shirt, Red, with team name",
|
| 14 |
]
|
| 15 |
|
| 16 |
css="""
|
|
|
|
| 20 |
}
|
| 21 |
"""
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
with gr.Blocks(css=css) as demo:
|
| 24 |
|
| 25 |
with gr.Column(elem_id="col-container"):
|
| 26 |
gr.Markdown(f"""
|
| 27 |
+
# T-shirt Mockup Generator
|
|
|
|
| 28 |
""")
|
| 29 |
|
| 30 |
with gr.Row():
|
| 31 |
|
| 32 |
+
style = gr.Dropdown(
|
| 33 |
+
label="T-shirt Style",
|
| 34 |
+
choices=["Casual", "Formal", "Sports"],
|
| 35 |
+
default="Casual",
|
|
|
|
| 36 |
container=False,
|
| 37 |
)
|
| 38 |
|
| 39 |
+
run_button = gr.Button("Generate Mockup", scale=0)
|
| 40 |
|
| 41 |
+
result = gr.Textbox(label="Mockup", placeholder="Generated Mockup", readonly=True)
|
| 42 |
|
| 43 |
+
with gr.Accordion("Design Options", open=False):
|
| 44 |
|
| 45 |
+
color = gr.Textbox(
|
| 46 |
+
label="T-shirt Color",
|
| 47 |
+
placeholder="Enter color",
|
| 48 |
+
visible=True,
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
+
graphics = gr.Textbox(
|
| 52 |
+
label="Graphics",
|
| 53 |
+
placeholder="Enter graphic details",
|
| 54 |
+
visible=True,
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
|
| 57 |
+
text = gr.Textbox(
|
| 58 |
+
label="Text (optional)",
|
| 59 |
+
placeholder="Enter text for T-shirt",
|
| 60 |
+
visible=True,
|
| 61 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
gr.Examples(
|
| 64 |
+
examples=examples,
|
| 65 |
+
inputs=[style]
|
| 66 |
)
|
| 67 |
|
| 68 |
run_button.click(
|
| 69 |
+
fn=generate_tshirt_mockup,
|
| 70 |
+
inputs=[style, color, graphics, text],
|
| 71 |
+
outputs=[result]
|
| 72 |
)
|
| 73 |
|
| 74 |
+
demo.queue().launch()
|