import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
import cv2 as cv
import numpy as np

from transformers import DetrImageProcessor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from transformers.image_transforms import id_to_rgb



import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf, bbox_inches="tight")
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    # print("Labels " + str(labels))

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def contour_map(map_to_use, label_id):
    mask = (map_to_use.cpu().numpy() == label_id)
    visual_mask = (mask * 255).astype(np.uint8)
    contours, hierarchy = cv.findContours(visual_mask, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
    return contours, hierarchy

def segment_images(model_name,url_input,image_input,threshold):
    ####
    # Get Image Object
    if validators.url(url_input):
        image = Image.open(requests.get(url_input, stream=True).raw)
    elif image_input:
        image = image_input
    ####

    if "detr" in model_name:
        pass
    elif "maskformer" in model_name.lower():
        # Load the processor and model
        processor = MaskFormerImageProcessor.from_pretrained(model_name)
        # print(type(processor))
        model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)

        inputs = processor(images=image, return_tensors="pt")

        outputs = model(**inputs)
        results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]

        return_string = ""

        for r in results["segments_info"]:
            contour_list, hierarchy = contour_map(results["segmentation"], r["id"])
            label_name = model.config.id2label[r["label_id"]]
            return_string += f"ID: {r['id']}\t Contour Count: {len(contour_list)}\t Score: {r['score']}\t Label Name: {label_name},\n"

        r_shape = results["segmentation"].shape
        new_image = np.zeros((r_shape[0], r_shape[1], 3), dtype=np.uint8)
        new_image[:, :, 0] = (results["segmentation"].numpy()[:, :] * 2) % 256
        new_image[:, :, 1] = (new_image[:, :, 0] * 3) %256
        new_image[:, :, 2] = (new_image[:, :, 0] * 4) %256

        new_image = Image.fromarray(new_image)

        return new_image, return_string
        
        pass
    else:
        raise NameError("Model is not implemented")
        
def set_example_image(example: list) -> dict:
    # return gr.Image.update(value=example[0])
    try:
        return gr.Image(value=example[0]["path"])
    except error as e:
        print("In function: set_example_image")
        print(e)
        raise e

def set_example_url(example: list) -> dict:
    # return gr.Textbox.update(value=example[0])
    try:
        return gr.Image(value=example[0]["path"])
    except error as e:
        print("In function: set_example_image")
        print(e)
        return gr.Image(example[0])
        


title = """<h1 id="title">Image Segmentation with Various Models</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic)   (Not implemented YET)
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic) (Not implemented YET)
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco)

Warning: On the free tier, MaskFormer takes a long time. 
"""

models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"]
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]

# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)


def changing():
    # https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4
    # return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
    # return gr.Button(interactive=True), gr.Button(interactive=True)
    return gr.Button('Detect', interactive=True), gr.Button('Detect', interactive=True)


with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    # gr.Markdown(twitter_link)
    options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True)
    
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')

    
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                img_output_from_url = gr.Image(height=650,width=650)
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect', interactive=False)
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(height=650,width=650)
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) # Can't get case_sensitive to work
                
            img_but = gr.Button('Detect', interactive=False)

    
    # output_text1 = gr.outputs.Textbox(label="Confidence Values")
    output_text1 = gr.components.Textbox(label="Confidence Values")
    # https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
    
    options.change(fn=changing, inputs=[], outputs=[img_but, url_but])

    
    url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
    img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
    # url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
    # img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
    
    # url_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
    # img_but.click(segment_images,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)

    
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
    

    # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")

    
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True)