|
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT |
|
import comfy.model_management as model_management |
|
|
|
class OneFormer_COCO_SemSegPreprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "semantic_segmentate" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" |
|
|
|
def semantic_segmentate(self, image, resolution=512): |
|
from custom_controlnet_aux.oneformer import OneformerSegmentor |
|
|
|
model = OneformerSegmentor.from_pretrained(filename="150_16_swin_l_oneformer_coco_100ep.pth") |
|
model = model.to(model_management.get_torch_device()) |
|
out = common_annotator_call(model, image, resolution=resolution) |
|
del model |
|
return (out,) |
|
|
|
class OneFormer_ADE20K_SemSegPreprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "semantic_segmentate" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" |
|
|
|
def semantic_segmentate(self, image, resolution=512): |
|
from custom_controlnet_aux.oneformer import OneformerSegmentor |
|
|
|
model = OneformerSegmentor.from_pretrained(filename="250_16_swin_l_oneformer_ade20k_160k.pth") |
|
model = model.to(model_management.get_torch_device()) |
|
out = common_annotator_call(model, image, resolution=resolution) |
|
del model |
|
return (out,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"OneFormer-COCO-SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor, |
|
"OneFormer-ADE20K-SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"OneFormer-COCO-SemSegPreprocessor": "OneFormer COCO Segmentor", |
|
"OneFormer-ADE20K-SemSegPreprocessor": "OneFormer ADE20K Segmentor" |
|
} |