|
import torch |
|
import numpy as np |
|
import comfy.model_management as model_management |
|
import comfy.utils |
|
|
|
|
|
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs |
|
|
|
def get_intensity_mask(image_array, lower_bound, upper_bound): |
|
mask = image_array[:, :, 0] |
|
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0) |
|
mask = np.expand_dims(mask, 2).repeat(3, axis=2) |
|
return mask |
|
|
|
def combine_layers(base_layer, top_layer): |
|
mask = top_layer.astype(bool) |
|
temp = 1 - (1 - top_layer) * (1 - base_layer) |
|
result = base_layer * (~mask) + temp * mask |
|
return result |
|
|
|
class AnyLinePreprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return define_preprocessor_inputs( |
|
merge_with_lineart=INPUT.COMBO(["lineart_standard", "lineart_realisitic", "lineart_anime", "manga_line"], default="lineart_standard"), |
|
resolution=INPUT.RESOLUTION(default=1280, step=8), |
|
lineart_lower_bound=INPUT.FLOAT(default=0), |
|
lineart_upper_bound=INPUT.FLOAT(default=1), |
|
object_min_size=INPUT.INT(default=36, min=1), |
|
object_connectivity=INPUT.INT(default=1, min=1) |
|
) |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
|
|
FUNCTION = "get_anyline" |
|
CATEGORY = "ControlNet Preprocessors/Line Extractors" |
|
|
|
def __init__(self): |
|
self.device = model_management.get_torch_device() |
|
|
|
def get_anyline(self, image, merge_with_lineart="lineart_standard", resolution=512, lineart_lower_bound=0, lineart_upper_bound=1, object_min_size=36, object_connectivity=1): |
|
from custom_controlnet_aux.teed import TEDDetector |
|
from skimage import morphology |
|
pbar = comfy.utils.ProgressBar(3) |
|
|
|
|
|
mteed_model = TEDDetector.from_pretrained("TheMistoAI/MistoLine", "MTEED.pth", subfolder="Anyline").to(self.device) |
|
mteed_result = common_annotator_call(mteed_model, image, resolution=resolution, show_pbar=False) |
|
mteed_result = mteed_result.numpy() |
|
del mteed_model |
|
pbar.update(1) |
|
|
|
|
|
if merge_with_lineart == "lineart_standard": |
|
from custom_controlnet_aux.lineart_standard import LineartStandardDetector |
|
lineart_standard_detector = LineartStandardDetector() |
|
lineart_result = common_annotator_call(lineart_standard_detector, image, guassian_sigma=2, intensity_threshold=3, resolution=resolution, show_pbar=False).numpy() |
|
del lineart_standard_detector |
|
else: |
|
from custom_controlnet_aux.lineart import LineartDetector |
|
from custom_controlnet_aux.lineart_anime import LineartAnimeDetector |
|
from custom_controlnet_aux.manga_line import LineartMangaDetector |
|
lineart_detector = dict(lineart_realisitic=LineartDetector, lineart_anime=LineartAnimeDetector, manga_line=LineartMangaDetector)[merge_with_lineart] |
|
lineart_detector = lineart_detector.from_pretrained().to(self.device) |
|
lineart_result = common_annotator_call(lineart_detector, image, resolution=resolution, show_pbar=False).numpy() |
|
del lineart_detector |
|
pbar.update(1) |
|
|
|
final_result = [] |
|
for i in range(len(image)): |
|
_lineart_result = get_intensity_mask(lineart_result[i], lower_bound=lineart_lower_bound, upper_bound=lineart_upper_bound) |
|
_cleaned = morphology.remove_small_objects(_lineart_result.astype(bool), min_size=object_min_size, connectivity=object_connectivity) |
|
_lineart_result = _lineart_result * _cleaned |
|
_mteed_result = mteed_result[i] |
|
|
|
|
|
final_result.append(torch.from_numpy(combine_layers(_mteed_result, _lineart_result))) |
|
pbar.update(1) |
|
return (torch.stack(final_result),) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"AnyLineArtPreprocessor_aux": AnyLinePreprocessor |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"AnyLineArtPreprocessor_aux": "AnyLine Lineart" |
|
} |
|
|