|
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT |
|
import comfy.model_management as model_management |
|
import torch |
|
from einops import rearrange |
|
|
|
class AnimeFace_SemSegPreprocessor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
|
|
|
|
return define_preprocessor_inputs( |
|
remove_background_using_abg=INPUT.BOOLEAN(True), |
|
resolution=INPUT.RESOLUTION(default=512, min=512, max=512) |
|
) |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
RETURN_NAMES = ("IMAGE", "ABG_CHARACTER_MASK (MASK)") |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" |
|
|
|
def execute(self, image, remove_background_using_abg=True, resolution=512, **kwargs): |
|
from custom_controlnet_aux.anime_face_segment import AnimeFaceSegmentor |
|
|
|
model = AnimeFaceSegmentor.from_pretrained().to(model_management.get_torch_device()) |
|
if remove_background_using_abg: |
|
out_image_with_mask = common_annotator_call(model, image, resolution=resolution, remove_background=True) |
|
out_image = out_image_with_mask[..., :3] |
|
mask = out_image_with_mask[..., 3:] |
|
mask = rearrange(mask, "n h w c -> n c h w") |
|
else: |
|
out_image = common_annotator_call(model, image, resolution=resolution, remove_background=False) |
|
N, H, W, C = out_image.shape |
|
mask = torch.ones(N, C, H, W) |
|
del model |
|
return (out_image, mask) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"AnimeFace_SemSegPreprocessor": AnimeFace_SemSegPreprocessor |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"AnimeFace_SemSegPreprocessor": "Anime Face Segmentor" |
|
} |