|
from .utils import max_, min_
|
|
from nodes import MAX_RESOLUTION
|
|
import comfy.utils
|
|
from nodes import SaveImage
|
|
from node_helpers import pillow
|
|
from PIL import Image, ImageOps
|
|
|
|
import kornia
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms.v2 as T
|
|
|
|
|
|
|
|
import math
|
|
import os
|
|
import numpy as np
|
|
import folder_paths
|
|
from pathlib import Path
|
|
import random
|
|
|
|
"""
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
Image analysis
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
"""
|
|
|
|
class ImageEnhanceDifference:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image1": ("IMAGE",),
|
|
"image2": ("IMAGE",),
|
|
"exponent": ("FLOAT", { "default": 0.75, "min": 0.00, "max": 1.00, "step": 0.05, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image analysis"
|
|
|
|
def execute(self, image1, image2, exponent):
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
image2 = comfy.utils.common_upscale(image2.permute([0,3,1,2]), image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
|
|
|
|
diff_image = image1 - image2
|
|
diff_image = torch.pow(diff_image, exponent)
|
|
diff_image = torch.clamp(diff_image, 0, 1)
|
|
|
|
return(diff_image,)
|
|
|
|
"""
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
Batch tools
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
"""
|
|
|
|
class ImageBatchMultiple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image_1": ("IMAGE",),
|
|
"method": (["nearest-exact", "bilinear", "area", "bicubic", "lanczos"], { "default": "lanczos" }),
|
|
}, "optional": {
|
|
"image_2": ("IMAGE",),
|
|
"image_3": ("IMAGE",),
|
|
"image_4": ("IMAGE",),
|
|
"image_5": ("IMAGE",),
|
|
},
|
|
}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image batch"
|
|
|
|
def execute(self, image_1, method, image_2=None, image_3=None, image_4=None, image_5=None):
|
|
out = image_1
|
|
|
|
if image_2 is not None:
|
|
if image_1.shape[1:] != image_2.shape[1:]:
|
|
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
|
|
out = torch.cat((image_1, image_2), dim=0)
|
|
if image_3 is not None:
|
|
if image_1.shape[1:] != image_3.shape[1:]:
|
|
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
|
|
out = torch.cat((out, image_3), dim=0)
|
|
if image_4 is not None:
|
|
if image_1.shape[1:] != image_4.shape[1:]:
|
|
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
|
|
out = torch.cat((out, image_4), dim=0)
|
|
if image_5 is not None:
|
|
if image_1.shape[1:] != image_5.shape[1:]:
|
|
image_5 = comfy.utils.common_upscale(image_5.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
|
|
out = torch.cat((out, image_5), dim=0)
|
|
|
|
return (out,)
|
|
|
|
|
|
class ImageExpandBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"size": ("INT", { "default": 16, "min": 1, "step": 1, }),
|
|
"method": (["expand", "repeat all", "repeat first", "repeat last"],)
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image batch"
|
|
|
|
def execute(self, image, size, method):
|
|
orig_size = image.shape[0]
|
|
|
|
if orig_size == size:
|
|
return (image,)
|
|
|
|
if size <= 1:
|
|
return (image[:size],)
|
|
|
|
if 'expand' in method:
|
|
out = torch.empty([size] + list(image.shape)[1:], dtype=image.dtype, device=image.device)
|
|
if size < orig_size:
|
|
scale = (orig_size - 1) / (size - 1)
|
|
for i in range(size):
|
|
out[i] = image[min(round(i * scale), orig_size - 1)]
|
|
else:
|
|
scale = orig_size / size
|
|
for i in range(size):
|
|
out[i] = image[min(math.floor((i + 0.5) * scale), orig_size - 1)]
|
|
elif 'all' in method:
|
|
out = image.repeat([math.ceil(size / image.shape[0])] + [1] * (len(image.shape) - 1))[:size]
|
|
elif 'first' in method:
|
|
if size < image.shape[0]:
|
|
out = image[:size]
|
|
else:
|
|
out = torch.cat([image[:1].repeat(size-image.shape[0], 1, 1, 1), image], dim=0)
|
|
elif 'last' in method:
|
|
if size < image.shape[0]:
|
|
out = image[:size]
|
|
else:
|
|
out = torch.cat((image, image[-1:].repeat((size-image.shape[0], 1, 1, 1))), dim=0)
|
|
|
|
return (out,)
|
|
|
|
class ImageFromBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE", ),
|
|
"start": ("INT", { "default": 0, "min": 0, "step": 1, }),
|
|
"length": ("INT", { "default": -1, "min": -1, "step": 1, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image batch"
|
|
|
|
def execute(self, image, start, length):
|
|
if length<0:
|
|
length = image.shape[0]
|
|
start = min(start, image.shape[0]-1)
|
|
length = min(image.shape[0]-start, length)
|
|
return (image[start:start + length], )
|
|
|
|
|
|
class ImageListToBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
INPUT_IS_LIST = True
|
|
CATEGORY = "essentials/image batch"
|
|
|
|
def execute(self, image):
|
|
shape = image[0].shape[1:3]
|
|
out = []
|
|
|
|
for i in range(len(image)):
|
|
img = image[i]
|
|
if image[i].shape[1:3] != shape:
|
|
img = comfy.utils.common_upscale(img.permute([0,3,1,2]), shape[1], shape[0], upscale_method='bicubic', crop='center').permute([0,2,3,1])
|
|
out.append(img)
|
|
|
|
out = torch.cat(out, dim=0)
|
|
|
|
return (out,)
|
|
|
|
class ImageBatchToList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
OUTPUT_IS_LIST = (True,)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image batch"
|
|
|
|
def execute(self, image):
|
|
return ([image[i].unsqueeze(0) for i in range(image.shape[0])], )
|
|
|
|
|
|
"""
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
Image manipulation
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
"""
|
|
|
|
class ImageCompositeFromMaskBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image_from": ("IMAGE", ),
|
|
"image_to": ("IMAGE", ),
|
|
"mask": ("MASK", )
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image_from, image_to, mask):
|
|
frames = mask.shape[0]
|
|
|
|
if image_from.shape[1] != image_to.shape[1] or image_from.shape[2] != image_to.shape[2]:
|
|
image_to = comfy.utils.common_upscale(image_to.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
|
|
|
|
if frames < image_from.shape[0]:
|
|
image_from = image_from[:frames]
|
|
elif frames > image_from.shape[0]:
|
|
image_from = torch.cat((image_from, image_from[-1].unsqueeze(0).repeat(frames-image_from.shape[0], 1, 1, 1)), dim=0)
|
|
|
|
mask = mask.unsqueeze(3).repeat(1, 1, 1, 3)
|
|
|
|
if image_from.shape[1] != mask.shape[1] or image_from.shape[2] != mask.shape[2]:
|
|
mask = comfy.utils.common_upscale(mask.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
|
|
|
|
out = mask * image_to + (1 - mask) * image_from
|
|
|
|
return (out, )
|
|
|
|
class ImageComposite:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"destination": ("IMAGE",),
|
|
"source": ("IMAGE",),
|
|
"x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
|
|
"y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
|
|
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
|
|
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
|
|
},
|
|
"optional": {
|
|
"mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, destination, source, x, y, offset_x, offset_y, mask=None):
|
|
if mask is None:
|
|
mask = torch.ones_like(source)[:,:,:,0]
|
|
|
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, 3)
|
|
|
|
if mask.shape[1:3] != source.shape[1:3]:
|
|
mask = F.interpolate(mask.permute([0, 3, 1, 2]), size=(source.shape[1], source.shape[2]), mode='bicubic')
|
|
mask = mask.permute([0, 2, 3, 1])
|
|
|
|
if mask.shape[0] > source.shape[0]:
|
|
mask = mask[:source.shape[0]]
|
|
elif mask.shape[0] < source.shape[0]:
|
|
mask = torch.cat((mask, mask[-1:].repeat((source.shape[0]-mask.shape[0], 1, 1, 1))), dim=0)
|
|
|
|
if destination.shape[0] > source.shape[0]:
|
|
destination = destination[:source.shape[0]]
|
|
elif destination.shape[0] < source.shape[0]:
|
|
destination = torch.cat((destination, destination[-1:].repeat((source.shape[0]-destination.shape[0], 1, 1, 1))), dim=0)
|
|
|
|
if not isinstance(x, list):
|
|
x = [x]
|
|
if not isinstance(y, list):
|
|
y = [y]
|
|
|
|
if len(x) < destination.shape[0]:
|
|
x = x + [x[-1]] * (destination.shape[0] - len(x))
|
|
if len(y) < destination.shape[0]:
|
|
y = y + [y[-1]] * (destination.shape[0] - len(y))
|
|
|
|
x = [i + offset_x for i in x]
|
|
y = [i + offset_y for i in y]
|
|
|
|
output = []
|
|
for i in range(destination.shape[0]):
|
|
d = destination[i].clone()
|
|
s = source[i]
|
|
m = mask[i]
|
|
|
|
if x[i]+source.shape[2] > destination.shape[2]:
|
|
s = s[:, :, :destination.shape[2]-x[i], :]
|
|
m = m[:, :, :destination.shape[2]-x[i], :]
|
|
if y[i]+source.shape[1] > destination.shape[1]:
|
|
s = s[:, :destination.shape[1]-y[i], :, :]
|
|
m = m[:destination.shape[1]-y[i], :, :]
|
|
|
|
|
|
d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] = s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m)
|
|
output.append(d)
|
|
|
|
output = torch.stack(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (output,)
|
|
|
|
class ImageResize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
|
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
|
|
"interpolation": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],),
|
|
"method": (["stretch", "keep proportion", "fill / crop", "pad"],),
|
|
"condition": (["always", "downscale if bigger", "upscale if smaller", "if bigger area", "if smaller area"],),
|
|
"multiple_of": ("INT", { "default": 0, "min": 0, "max": 512, "step": 1, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT",)
|
|
RETURN_NAMES = ("IMAGE", "width", "height",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image, width, height, method="stretch", interpolation="nearest", condition="always", multiple_of=0, keep_proportion=False):
|
|
_, oh, ow, _ = image.shape
|
|
x = y = x2 = y2 = 0
|
|
pad_left = pad_right = pad_top = pad_bottom = 0
|
|
|
|
if keep_proportion:
|
|
method = "keep proportion"
|
|
|
|
if multiple_of > 1:
|
|
width = width - (width % multiple_of)
|
|
height = height - (height % multiple_of)
|
|
|
|
if method == 'keep proportion' or method == 'pad':
|
|
if width == 0 and oh < height:
|
|
width = MAX_RESOLUTION
|
|
elif width == 0 and oh >= height:
|
|
width = ow
|
|
|
|
if height == 0 and ow < width:
|
|
height = MAX_RESOLUTION
|
|
elif height == 0 and ow >= width:
|
|
height = oh
|
|
|
|
ratio = min(width / ow, height / oh)
|
|
new_width = round(ow*ratio)
|
|
new_height = round(oh*ratio)
|
|
|
|
if method == 'pad':
|
|
pad_left = (width - new_width) // 2
|
|
pad_right = width - new_width - pad_left
|
|
pad_top = (height - new_height) // 2
|
|
pad_bottom = height - new_height - pad_top
|
|
|
|
width = new_width
|
|
height = new_height
|
|
elif method.startswith('fill'):
|
|
width = width if width > 0 else ow
|
|
height = height if height > 0 else oh
|
|
|
|
ratio = max(width / ow, height / oh)
|
|
new_width = round(ow*ratio)
|
|
new_height = round(oh*ratio)
|
|
x = (new_width - width) // 2
|
|
y = (new_height - height) // 2
|
|
x2 = x + width
|
|
y2 = y + height
|
|
if x2 > new_width:
|
|
x -= (x2 - new_width)
|
|
if x < 0:
|
|
x = 0
|
|
if y2 > new_height:
|
|
y -= (y2 - new_height)
|
|
if y < 0:
|
|
y = 0
|
|
width = new_width
|
|
height = new_height
|
|
else:
|
|
width = width if width > 0 else ow
|
|
height = height if height > 0 else oh
|
|
|
|
if "always" in condition \
|
|
or ("downscale if bigger" == condition and (oh > height or ow > width)) or ("upscale if smaller" == condition and (oh < height or ow < width)) \
|
|
or ("bigger area" in condition and (oh * ow > height * width)) or ("smaller area" in condition and (oh * ow < height * width)):
|
|
|
|
outputs = image.permute(0,3,1,2)
|
|
|
|
if interpolation == "lanczos":
|
|
outputs = comfy.utils.lanczos(outputs, width, height)
|
|
else:
|
|
outputs = F.interpolate(outputs, size=(height, width), mode=interpolation)
|
|
|
|
if method == 'pad':
|
|
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
|
|
outputs = F.pad(outputs, (pad_left, pad_right, pad_top, pad_bottom), value=0)
|
|
|
|
outputs = outputs.permute(0,2,3,1)
|
|
|
|
if method.startswith('fill'):
|
|
if x > 0 or y > 0 or x2 > 0 or y2 > 0:
|
|
outputs = outputs[:, y:y2, x:x2, :]
|
|
else:
|
|
outputs = image
|
|
|
|
if multiple_of > 1 and (outputs.shape[2] % multiple_of != 0 or outputs.shape[1] % multiple_of != 0):
|
|
width = outputs.shape[2]
|
|
height = outputs.shape[1]
|
|
x = (width % multiple_of) // 2
|
|
y = (height % multiple_of) // 2
|
|
x2 = width - ((width % multiple_of) - x)
|
|
y2 = height - ((height % multiple_of) - y)
|
|
outputs = outputs[:, y:y2, x:x2, :]
|
|
|
|
outputs = torch.clamp(outputs, 0, 1)
|
|
|
|
return(outputs, outputs.shape[2], outputs.shape[1],)
|
|
|
|
class ImageFlip:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"axis": (["x", "y", "xy"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image, axis):
|
|
dim = ()
|
|
if "y" in axis:
|
|
dim += (1,)
|
|
if "x" in axis:
|
|
dim += (2,)
|
|
image = torch.flip(image, dim)
|
|
|
|
return(image,)
|
|
|
|
class ImageCrop:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"width": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"height": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"position": (["top-left", "top-center", "top-right", "right-center", "bottom-right", "bottom-center", "bottom-left", "left-center", "center"],),
|
|
"x_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
|
|
"y_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE","INT","INT",)
|
|
RETURN_NAMES = ("IMAGE","x","y",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image, width, height, position, x_offset, y_offset):
|
|
_, oh, ow, _ = image.shape
|
|
|
|
width = min(ow, width)
|
|
height = min(oh, height)
|
|
|
|
if "center" in position:
|
|
x = round((ow-width) / 2)
|
|
y = round((oh-height) / 2)
|
|
if "top" in position:
|
|
y = 0
|
|
if "bottom" in position:
|
|
y = oh-height
|
|
if "left" in position:
|
|
x = 0
|
|
if "right" in position:
|
|
x = ow-width
|
|
|
|
x += x_offset
|
|
y += y_offset
|
|
|
|
x2 = x+width
|
|
y2 = y+height
|
|
|
|
if x2 > ow:
|
|
x2 = ow
|
|
if x < 0:
|
|
x = 0
|
|
if y2 > oh:
|
|
y2 = oh
|
|
if y < 0:
|
|
y = 0
|
|
|
|
image = image[:, y:y2, x:x2, :]
|
|
|
|
return(image, x, y, )
|
|
|
|
class ImageTile:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
|
|
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
|
|
"overlap": ("FLOAT", { "default": 0, "min": 0, "max": 0.5, "step": 0.01, }),
|
|
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
|
|
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT")
|
|
RETURN_NAMES = ("IMAGE", "tile_width", "tile_height", "overlap_x", "overlap_y",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image, rows, cols, overlap, overlap_x, overlap_y):
|
|
h, w = image.shape[1:3]
|
|
tile_h = h // rows
|
|
tile_w = w // cols
|
|
h = tile_h * rows
|
|
w = tile_w * cols
|
|
overlap_h = int(tile_h * overlap) + overlap_y
|
|
overlap_w = int(tile_w * overlap) + overlap_x
|
|
|
|
|
|
overlap_h = min(tile_h // 2, overlap_h)
|
|
overlap_w = min(tile_w // 2, overlap_w)
|
|
|
|
if rows == 1:
|
|
overlap_h = 0
|
|
if cols == 1:
|
|
overlap_w = 0
|
|
|
|
tiles = []
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
y1 = i * tile_h
|
|
x1 = j * tile_w
|
|
|
|
if i > 0:
|
|
y1 -= overlap_h
|
|
if j > 0:
|
|
x1 -= overlap_w
|
|
|
|
y2 = y1 + tile_h + overlap_h
|
|
x2 = x1 + tile_w + overlap_w
|
|
|
|
if y2 > h:
|
|
y2 = h
|
|
y1 = y2 - tile_h - overlap_h
|
|
if x2 > w:
|
|
x2 = w
|
|
x1 = x2 - tile_w - overlap_w
|
|
|
|
tiles.append(image[:, y1:y2, x1:x2, :])
|
|
tiles = torch.cat(tiles, dim=0)
|
|
|
|
return(tiles, tile_w+overlap_w, tile_h+overlap_h, overlap_w, overlap_h,)
|
|
|
|
class ImageUntile:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"tiles": ("IMAGE",),
|
|
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
|
|
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
|
|
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
|
|
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, tiles, overlap_x, overlap_y, rows, cols):
|
|
tile_h, tile_w = tiles.shape[1:3]
|
|
tile_h -= overlap_y
|
|
tile_w -= overlap_x
|
|
out_w = cols * tile_w
|
|
out_h = rows * tile_h
|
|
|
|
out = torch.zeros((1, out_h, out_w, tiles.shape[3]), device=tiles.device, dtype=tiles.dtype)
|
|
|
|
for i in range(rows):
|
|
for j in range(cols):
|
|
y1 = i * tile_h
|
|
x1 = j * tile_w
|
|
|
|
if i > 0:
|
|
y1 -= overlap_y
|
|
if j > 0:
|
|
x1 -= overlap_x
|
|
|
|
y2 = y1 + tile_h + overlap_y
|
|
x2 = x1 + tile_w + overlap_x
|
|
|
|
if y2 > out_h:
|
|
y2 = out_h
|
|
y1 = y2 - tile_h - overlap_y
|
|
if x2 > out_w:
|
|
x2 = out_w
|
|
x1 = x2 - tile_w - overlap_x
|
|
|
|
mask = torch.ones((1, tile_h+overlap_y, tile_w+overlap_x), device=tiles.device, dtype=tiles.dtype)
|
|
|
|
|
|
if i > 0 and overlap_y > 0:
|
|
mask[:, :overlap_y, :] *= torch.linspace(0, 1, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
if j > 0 and overlap_x > 0:
|
|
mask[:, :, :overlap_x] *= torch.linspace(0, 1, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, tiles.shape[3])
|
|
tile = tiles[i * cols + j] * mask
|
|
out[:, y1:y2, x1:x2, :] = out[:, y1:y2, x1:x2, :] * (1 - mask) + tile
|
|
return(out, )
|
|
|
|
class ImageSeamCarving:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
|
|
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
|
|
"energy": (["backward", "forward"],),
|
|
"order": (["width-first", "height-first"],),
|
|
},
|
|
"optional": {
|
|
"keep_mask": ("MASK",),
|
|
"drop_mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
CATEGORY = "essentials/image manipulation"
|
|
FUNCTION = "execute"
|
|
|
|
def execute(self, image, width, height, energy, order, keep_mask=None, drop_mask=None):
|
|
from .carve import seam_carving
|
|
|
|
img = image.permute([0, 3, 1, 2])
|
|
|
|
if keep_mask is not None:
|
|
|
|
keep_mask = keep_mask.unsqueeze(1)
|
|
|
|
if keep_mask.shape[2] != img.shape[2] or keep_mask.shape[3] != img.shape[3]:
|
|
keep_mask = F.interpolate(keep_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
|
|
if drop_mask is not None:
|
|
drop_mask = drop_mask.unsqueeze(1)
|
|
|
|
if drop_mask.shape[2] != img.shape[2] or drop_mask.shape[3] != img.shape[3]:
|
|
drop_mask = F.interpolate(drop_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
|
|
|
|
out = []
|
|
for i in range(img.shape[0]):
|
|
resized = seam_carving(
|
|
T.ToPILImage()(img[i]),
|
|
size=(width, height),
|
|
energy_mode=energy,
|
|
order=order,
|
|
keep_mask=T.ToPILImage()(keep_mask[i]) if keep_mask is not None else None,
|
|
drop_mask=T.ToPILImage()(drop_mask[i]) if drop_mask is not None else None,
|
|
)
|
|
out.append(T.ToTensor()(resized))
|
|
|
|
out = torch.stack(out).permute([0, 2, 3, 1])
|
|
|
|
return(out, )
|
|
|
|
class ImageRandomTransform:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
|
"repeat": ("INT", { "default": 1, "min": 1, "max": 256, "step": 1, }),
|
|
"variation": ("FLOAT", { "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, image, seed, repeat, variation):
|
|
h, w = image.shape[1:3]
|
|
image = image.repeat(repeat, 1, 1, 1).permute([0, 3, 1, 2])
|
|
|
|
distortion = 0.2 * variation
|
|
rotation = 5 * variation
|
|
brightness = 0.5 * variation
|
|
contrast = 0.5 * variation
|
|
saturation = 0.5 * variation
|
|
hue = 0.2 * variation
|
|
scale = 0.5 * variation
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
out = []
|
|
for i in image:
|
|
tramsforms = T.Compose([
|
|
T.RandomPerspective(distortion_scale=distortion, p=0.5),
|
|
T.RandomRotation(degrees=rotation, interpolation=T.InterpolationMode.BILINEAR, expand=True),
|
|
T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=(-hue, hue)),
|
|
T.RandomHorizontalFlip(p=0.5),
|
|
T.RandomResizedCrop((h, w), scale=(1-scale, 1+scale), ratio=(w/h, w/h), interpolation=T.InterpolationMode.BICUBIC),
|
|
])
|
|
out.append(tramsforms(i.unsqueeze(0)))
|
|
|
|
out = torch.cat(out, dim=0).permute([0, 2, 3, 1]).clamp(0, 1)
|
|
|
|
return (out,)
|
|
|
|
class RemBGSession:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": (["u2net: general purpose", "u2netp: lightweight general purpose", "u2net_human_seg: human segmentation", "u2net_cloth_seg: cloths Parsing", "silueta: very small u2net", "isnet-general-use: general purpose", "isnet-anime: anime illustrations", "sam: general purpose"],),
|
|
"providers": (['CPU', 'CUDA', 'ROCM', 'DirectML', 'OpenVINO', 'CoreML', 'Tensorrt', 'Azure'],),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("REMBG_SESSION",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, model, providers):
|
|
from rembg import new_session, remove
|
|
|
|
model = model.split(":")[0]
|
|
|
|
class Session:
|
|
def __init__(self, model, providers):
|
|
self.session = new_session(model, providers=[providers+"ExecutionProvider"])
|
|
def process(self, image):
|
|
return remove(image, session=self.session)
|
|
|
|
return (Session(model, providers),)
|
|
|
|
class TransparentBGSession:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mode": (["base", "fast", "base-nightly"],),
|
|
"use_jit": ("BOOLEAN", { "default": True }),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("REMBG_SESSION",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, mode, use_jit):
|
|
from transparent_background import Remover
|
|
|
|
class Session:
|
|
def __init__(self, mode, use_jit):
|
|
self.session = Remover(mode=mode, jit=use_jit)
|
|
def process(self, image):
|
|
return self.session.process(image)
|
|
|
|
return (Session(mode, use_jit),)
|
|
|
|
class ImageRemoveBackground:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"rembg_session": ("REMBG_SESSION",),
|
|
"image": ("IMAGE",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image manipulation"
|
|
|
|
def execute(self, rembg_session, image):
|
|
image = image.permute([0, 3, 1, 2])
|
|
output = []
|
|
for img in image:
|
|
img = T.ToPILImage()(img)
|
|
img = rembg_session.process(img)
|
|
output.append(T.ToTensor()(img))
|
|
|
|
output = torch.stack(output, dim=0)
|
|
output = output.permute([0, 2, 3, 1])
|
|
mask = output[:, :, :, 3] if output.shape[3] == 4 else torch.ones_like(output[:, :, :, 0])
|
|
|
|
|
|
return(output, mask,)
|
|
|
|
"""
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
Image processing
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
"""
|
|
|
|
class ImageDesaturate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"factor": ("FLOAT", { "default": 1.00, "min": 0.00, "max": 1.00, "step": 0.05, }),
|
|
"method": (["luminance (Rec.709)", "luminance (Rec.601)", "average", "lightness"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def execute(self, image, factor, method):
|
|
if method == "luminance (Rec.709)":
|
|
grayscale = 0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2]
|
|
elif method == "luminance (Rec.601)":
|
|
grayscale = 0.299 * image[..., 0] + 0.587 * image[..., 1] + 0.114 * image[..., 2]
|
|
elif method == "average":
|
|
grayscale = image.mean(dim=3)
|
|
elif method == "lightness":
|
|
grayscale = (torch.max(image, dim=3)[0] + torch.min(image, dim=3)[0]) / 2
|
|
|
|
grayscale = (1.0 - factor) * image + factor * grayscale.unsqueeze(-1).repeat(1, 1, 1, 3)
|
|
grayscale = torch.clamp(grayscale, 0, 1)
|
|
|
|
return(grayscale,)
|
|
|
|
class PixelOEPixelize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"downscale_mode": (["contrast", "bicubic", "nearest", "center", "k-centroid"],),
|
|
"target_size": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8 }),
|
|
"patch_size": ("INT", { "default": 16, "min": 4, "max": 32, "step": 2 }),
|
|
"thickness": ("INT", { "default": 2, "min": 1, "max": 16, "step": 1 }),
|
|
"color_matching": ("BOOLEAN", { "default": True }),
|
|
"upscale": ("BOOLEAN", { "default": True }),
|
|
|
|
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def execute(self, image, downscale_mode, target_size, patch_size, thickness, color_matching, upscale):
|
|
from pixeloe.pixelize import pixelize
|
|
|
|
image = image.clone().mul(255).clamp(0, 255).byte().cpu().numpy()
|
|
output = []
|
|
for img in image:
|
|
img = pixelize(img,
|
|
mode=downscale_mode,
|
|
target_size=target_size,
|
|
patch_size=patch_size,
|
|
thickness=thickness,
|
|
contrast=1.0,
|
|
saturation=1.0,
|
|
color_matching=color_matching,
|
|
no_upscale=not upscale)
|
|
output.append(T.ToTensor()(img))
|
|
|
|
output = torch.stack(output, dim=0).permute([0, 2, 3, 1])
|
|
|
|
return(output,)
|
|
|
|
class ImagePosterize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"threshold": ("FLOAT", { "default": 0.50, "min": 0.00, "max": 1.00, "step": 0.05, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def execute(self, image, threshold):
|
|
image = image.mean(dim=3, keepdim=True)
|
|
image = (image > threshold).float()
|
|
image = image.repeat(1, 1, 1, 3)
|
|
|
|
return(image,)
|
|
|
|
|
|
class ImageApplyLUT:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"lut_file": (folder_paths.get_filename_list("luts"),),
|
|
"gamma_correction": ("BOOLEAN", { "default": True }),
|
|
"clip_values": ("BOOLEAN", { "default": True }),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1 }),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
|
|
def execute(self, image, lut_file, gamma_correction, clip_values, strength):
|
|
lut_file_path = folder_paths.get_full_path("luts", lut_file)
|
|
if not lut_file_path or not Path(lut_file_path).exists():
|
|
print(f"Could not find LUT file: {lut_file_path}")
|
|
return (image,)
|
|
|
|
from colour.io.luts.iridas_cube import read_LUT_IridasCube
|
|
|
|
device = image.device
|
|
lut = read_LUT_IridasCube(lut_file_path)
|
|
lut.name = lut_file
|
|
|
|
if clip_values:
|
|
if lut.domain[0].max() == lut.domain[0].min() and lut.domain[1].max() == lut.domain[1].min():
|
|
lut.table = np.clip(lut.table, lut.domain[0, 0], lut.domain[1, 0])
|
|
else:
|
|
if len(lut.table.shape) == 2:
|
|
for dim in range(3):
|
|
lut.table[:, dim] = np.clip(lut.table[:, dim], lut.domain[0, dim], lut.domain[1, dim])
|
|
else:
|
|
for dim in range(3):
|
|
lut.table[:, :, :, dim] = np.clip(lut.table[:, :, :, dim], lut.domain[0, dim], lut.domain[1, dim])
|
|
|
|
out = []
|
|
for img in image:
|
|
lut_img = img.cpu().numpy().copy()
|
|
|
|
is_non_default_domain = not np.array_equal(lut.domain, np.array([[0., 0., 0.], [1., 1., 1.]]))
|
|
dom_scale = None
|
|
if is_non_default_domain:
|
|
dom_scale = lut.domain[1] - lut.domain[0]
|
|
lut_img = lut_img * dom_scale + lut.domain[0]
|
|
if gamma_correction:
|
|
lut_img = lut_img ** (1/2.2)
|
|
lut_img = lut.apply(lut_img)
|
|
if gamma_correction:
|
|
lut_img = lut_img ** (2.2)
|
|
if is_non_default_domain:
|
|
lut_img = (lut_img - lut.domain[0]) / dom_scale
|
|
|
|
lut_img = torch.from_numpy(lut_img).to(device)
|
|
if strength < 1.0:
|
|
lut_img = strength * lut_img + (1 - strength) * img
|
|
out.append(lut_img)
|
|
|
|
out = torch.stack(out)
|
|
|
|
return (out, )
|
|
|
|
|
|
class ImageCAS:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"amount": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.05}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
CATEGORY = "essentials/image processing"
|
|
FUNCTION = "execute"
|
|
|
|
def execute(self, image, amount):
|
|
epsilon = 1e-5
|
|
img = F.pad(image.permute([0,3,1,2]), pad=(1, 1, 1, 1))
|
|
|
|
a = img[..., :-2, :-2]
|
|
b = img[..., :-2, 1:-1]
|
|
c = img[..., :-2, 2:]
|
|
d = img[..., 1:-1, :-2]
|
|
e = img[..., 1:-1, 1:-1]
|
|
f = img[..., 1:-1, 2:]
|
|
g = img[..., 2:, :-2]
|
|
h = img[..., 2:, 1:-1]
|
|
i = img[..., 2:, 2:]
|
|
|
|
|
|
cross = (b, d, e, f, h)
|
|
mn = min_(cross)
|
|
mx = max_(cross)
|
|
|
|
diag = (a, c, g, i)
|
|
mn2 = min_(diag)
|
|
mx2 = max_(diag)
|
|
mx = mx + mx2
|
|
mn = mn + mn2
|
|
|
|
|
|
inv_mx = torch.reciprocal(mx + epsilon)
|
|
amp = inv_mx * torch.minimum(mn, (2 - mx))
|
|
|
|
|
|
amp = torch.sqrt(amp)
|
|
w = - amp * (amount * (1/5 - 1/8) + 1/8)
|
|
div = torch.reciprocal(1 + 4*w)
|
|
|
|
output = ((b + d + f + h)*w + e) * div
|
|
output = output.clamp(0, 1)
|
|
|
|
|
|
output = output.permute([0,2,3,1])
|
|
|
|
return (output,)
|
|
|
|
class ImageSmartSharpen:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"noise_radius": ("INT", { "default": 7, "min": 1, "max": 25, "step": 1, }),
|
|
"preserve_edges": ("FLOAT", { "default": 0.75, "min": 0.0, "max": 1.0, "step": 0.05 }),
|
|
"sharpen": ("FLOAT", { "default": 5.0, "min": 0.0, "max": 25.0, "step": 0.5 }),
|
|
"ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1 }),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
CATEGORY = "essentials/image processing"
|
|
FUNCTION = "execute"
|
|
|
|
def execute(self, image, noise_radius, preserve_edges, sharpen, ratio):
|
|
import cv2
|
|
|
|
output = []
|
|
|
|
if preserve_edges > 0:
|
|
preserve_edges = max(1 - preserve_edges, 0.05)
|
|
|
|
for img in image:
|
|
if noise_radius > 1:
|
|
sigma = 0.3 * ((noise_radius - 1) * 0.5 - 1) + 0.8
|
|
|
|
blurred = cv2.bilateralFilter(img.cpu().numpy(), noise_radius, preserve_edges, sigma)
|
|
blurred = torch.from_numpy(blurred)
|
|
else:
|
|
blurred = img
|
|
|
|
if sharpen > 0:
|
|
sharpened = kornia.enhance.sharpness(img.permute(2,0,1), sharpen).permute(1,2,0)
|
|
else:
|
|
sharpened = img
|
|
|
|
img = ratio * sharpened + (1 - ratio) * blurred
|
|
img = torch.clamp(img, 0, 1)
|
|
output.append(img)
|
|
|
|
del blurred, sharpened
|
|
output = torch.stack(output)
|
|
|
|
return (output,)
|
|
|
|
|
|
class ExtractKeyframes:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"threshold": ("FLOAT", { "default": 0.85, "min": 0.00, "max": 1.00, "step": 0.01, }),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "STRING")
|
|
RETURN_NAMES = ("KEYFRAMES", "indexes")
|
|
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials"
|
|
|
|
def execute(self, image, threshold):
|
|
window_size = 2
|
|
|
|
variations = torch.sum(torch.abs(image[1:] - image[:-1]), dim=[1, 2, 3])
|
|
|
|
threshold = torch.quantile(variations.float(), threshold).item()
|
|
|
|
keyframes = []
|
|
for i in range(image.shape[0] - window_size + 1):
|
|
window = image[i:i + window_size]
|
|
variation = torch.sum(torch.abs(window[-1] - window[0])).item()
|
|
|
|
if variation > threshold:
|
|
keyframes.append(i + window_size - 1)
|
|
|
|
return (image[keyframes], ','.join(map(str, keyframes)),)
|
|
|
|
class ImageColorMatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"reference": ("IMAGE",),
|
|
"color_space": (["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],),
|
|
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
|
|
"device": (["auto", "cpu", "gpu"],),
|
|
"batch_size": ("INT", { "default": 0, "min": 0, "max": 1024, "step": 1, }),
|
|
},
|
|
"optional": {
|
|
"reference_mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def execute(self, image, reference, color_space, factor, device, batch_size, reference_mask=None):
|
|
if "gpu" == device:
|
|
device = comfy.model_management.get_torch_device()
|
|
elif "auto" == device:
|
|
device = comfy.model_management.intermediate_device()
|
|
else:
|
|
device = 'cpu'
|
|
|
|
image = image.permute([0, 3, 1, 2])
|
|
reference = reference.permute([0, 3, 1, 2]).to(device)
|
|
|
|
|
|
if reference_mask is not None:
|
|
assert reference_mask.ndim == 3, f"Expected reference_mask to have 3 dimensions, but got {reference_mask.ndim}"
|
|
assert reference_mask.shape[0] == reference.shape[0], f"Frame count mismatch: reference_mask has {reference_mask.shape[0]} frames, but reference has {reference.shape[0]}"
|
|
|
|
|
|
reference_mask = reference_mask.unsqueeze(1).to(device)
|
|
|
|
|
|
reference_mask = (reference_mask > 0.5).float()
|
|
|
|
|
|
if reference_mask.shape[2:] != reference.shape[2:]:
|
|
reference_mask = comfy.utils.common_upscale(
|
|
reference_mask,
|
|
reference.shape[3], reference.shape[2],
|
|
upscale_method='bicubic',
|
|
crop='center'
|
|
)
|
|
|
|
if batch_size == 0 or batch_size > image.shape[0]:
|
|
batch_size = image.shape[0]
|
|
|
|
if "LAB" == color_space:
|
|
reference = kornia.color.rgb_to_lab(reference)
|
|
elif "YCbCr" == color_space:
|
|
reference = kornia.color.rgb_to_ycbcr(reference)
|
|
elif "LUV" == color_space:
|
|
reference = kornia.color.rgb_to_luv(reference)
|
|
elif "YUV" == color_space:
|
|
reference = kornia.color.rgb_to_yuv(reference)
|
|
elif "XYZ" == color_space:
|
|
reference = kornia.color.rgb_to_xyz(reference)
|
|
|
|
reference_mean, reference_std = self.compute_mean_std(reference, reference_mask)
|
|
|
|
image_batch = torch.split(image, batch_size, dim=0)
|
|
output = []
|
|
|
|
for image in image_batch:
|
|
image = image.to(device)
|
|
|
|
if color_space == "LAB":
|
|
image = kornia.color.rgb_to_lab(image)
|
|
elif color_space == "YCbCr":
|
|
image = kornia.color.rgb_to_ycbcr(image)
|
|
elif color_space == "LUV":
|
|
image = kornia.color.rgb_to_luv(image)
|
|
elif color_space == "YUV":
|
|
image = kornia.color.rgb_to_yuv(image)
|
|
elif color_space == "XYZ":
|
|
image = kornia.color.rgb_to_xyz(image)
|
|
|
|
image_mean, image_std = self.compute_mean_std(image)
|
|
|
|
matched = torch.nan_to_num((image - image_mean) / image_std) * torch.nan_to_num(reference_std) + reference_mean
|
|
matched = factor * matched + (1 - factor) * image
|
|
|
|
if color_space == "LAB":
|
|
matched = kornia.color.lab_to_rgb(matched)
|
|
elif color_space == "YCbCr":
|
|
matched = kornia.color.ycbcr_to_rgb(matched)
|
|
elif color_space == "LUV":
|
|
matched = kornia.color.luv_to_rgb(matched)
|
|
elif color_space == "YUV":
|
|
matched = kornia.color.yuv_to_rgb(matched)
|
|
elif color_space == "XYZ":
|
|
matched = kornia.color.xyz_to_rgb(matched)
|
|
|
|
out = matched.permute([0, 2, 3, 1]).clamp(0, 1).to(comfy.model_management.intermediate_device())
|
|
output.append(out)
|
|
|
|
out = None
|
|
output = torch.cat(output, dim=0)
|
|
return (output,)
|
|
|
|
def compute_mean_std(self, tensor, mask=None):
|
|
if mask is not None:
|
|
|
|
masked_tensor = tensor * mask
|
|
|
|
|
|
mask_sum = mask.sum(dim=[2, 3], keepdim=True)
|
|
|
|
|
|
mask_sum = torch.clamp(mask_sum, min=1e-6)
|
|
|
|
|
|
mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum)
|
|
std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum))
|
|
else:
|
|
mean = tensor.mean(dim=[2, 3], keepdim=True)
|
|
std = tensor.std(dim=[2, 3], keepdim=True)
|
|
return mean, std
|
|
|
|
class ImageColorMatchAdobe(ImageColorMatch):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"reference": ("IMAGE",),
|
|
"color_space": (["RGB", "LAB"],),
|
|
"luminance_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
|
|
"color_intensity_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
|
|
"fade_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
|
|
"neutralization_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05}),
|
|
"device": (["auto", "cpu", "gpu"],),
|
|
},
|
|
"optional": {
|
|
"reference_mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def analyze_color_statistics(self, image, mask=None):
|
|
|
|
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
|
|
|
|
if mask is not None:
|
|
|
|
mask = F.interpolate(mask, size=image.shape[2:], mode='nearest')
|
|
mask = (mask > 0.5).float()
|
|
|
|
|
|
l = l * mask
|
|
a = a * mask
|
|
b = b * mask
|
|
|
|
|
|
num_pixels = mask.sum()
|
|
mean_l = (l * mask).sum() / num_pixels
|
|
mean_a = (a * mask).sum() / num_pixels
|
|
mean_b = (b * mask).sum() / num_pixels
|
|
std_l = torch.sqrt(((l - mean_l)**2 * mask).sum() / num_pixels)
|
|
var_ab = ((a - mean_a)**2 + (b - mean_b)**2) * mask
|
|
std_ab = torch.sqrt(var_ab.sum() / num_pixels)
|
|
else:
|
|
mean_l = l.mean()
|
|
std_l = l.std()
|
|
mean_a = a.mean()
|
|
mean_b = b.mean()
|
|
std_ab = torch.sqrt(a.var() + b.var())
|
|
|
|
return mean_l, std_l, mean_a, mean_b, std_ab
|
|
|
|
def apply_color_transformation(self, image, source_stats, dest_stats, L, C, N):
|
|
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
|
|
|
|
|
|
src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats
|
|
dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats
|
|
|
|
|
|
l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * L + src_mean_l
|
|
|
|
|
|
a = a - N * dest_mean_a
|
|
b = b - N * dest_mean_b
|
|
|
|
|
|
a_new = a * (src_std_ab / dest_std_ab) * C
|
|
b_new = b * (src_std_ab / dest_std_ab) * C
|
|
|
|
|
|
lab_new = torch.cat([l_new, a_new, b_new], dim=1)
|
|
|
|
|
|
rgb_new = kornia.color.lab_to_rgb(lab_new)
|
|
|
|
return rgb_new
|
|
|
|
def execute(self, image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor, device, reference_mask=None):
|
|
if "gpu" == device:
|
|
device = comfy.model_management.get_torch_device()
|
|
elif "auto" == device:
|
|
device = comfy.model_management.intermediate_device()
|
|
else:
|
|
device = 'cpu'
|
|
|
|
|
|
image = image.permute(0, 3, 1, 2).to(device)
|
|
reference = reference.permute(0, 3, 1, 2).to(device)
|
|
|
|
|
|
if reference_mask is not None:
|
|
|
|
if reference_mask.ndim == 2:
|
|
reference_mask = reference_mask.unsqueeze(0).unsqueeze(0)
|
|
elif reference_mask.ndim == 3:
|
|
reference_mask = reference_mask.unsqueeze(1)
|
|
reference_mask = reference_mask.to(device)
|
|
|
|
|
|
source_stats = self.analyze_color_statistics(reference, reference_mask)
|
|
dest_stats = self.analyze_color_statistics(image)
|
|
|
|
|
|
transformed = self.apply_color_transformation(
|
|
image, source_stats, dest_stats,
|
|
luminance_factor, color_intensity_factor, neutralization_factor
|
|
)
|
|
|
|
|
|
result = fade_factor * transformed + (1 - fade_factor) * image
|
|
|
|
|
|
result = result.permute(0, 2, 3, 1).clamp(0, 1).to(comfy.model_management.intermediate_device())
|
|
|
|
return (result,)
|
|
|
|
|
|
class ImageHistogramMatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"reference": ("IMAGE",),
|
|
"method": (["pytorch", "skimage"],),
|
|
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
|
|
"device": (["auto", "cpu", "gpu"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image processing"
|
|
|
|
def execute(self, image, reference, method, factor, device):
|
|
if "gpu" == device:
|
|
device = comfy.model_management.get_torch_device()
|
|
elif "auto" == device:
|
|
device = comfy.model_management.intermediate_device()
|
|
else:
|
|
device = 'cpu'
|
|
|
|
if "pytorch" in method:
|
|
from .histogram_matching import Histogram_Matching
|
|
|
|
image = image.permute([0, 3, 1, 2]).to(device)
|
|
reference = reference.permute([0, 3, 1, 2]).to(device)[0].unsqueeze(0)
|
|
image.requires_grad = True
|
|
reference.requires_grad = True
|
|
|
|
out = []
|
|
|
|
for i in image:
|
|
i = i.unsqueeze(0)
|
|
hm = Histogram_Matching(differentiable=True)
|
|
out.append(hm(i, reference))
|
|
out = torch.cat(out, dim=0)
|
|
out = factor * out + (1 - factor) * image
|
|
out = out.permute([0, 2, 3, 1]).clamp(0, 1)
|
|
else:
|
|
from skimage.exposure import match_histograms
|
|
|
|
out = torch.from_numpy(match_histograms(image.cpu().numpy(), reference.cpu().numpy(), channel_axis=3)).to(device)
|
|
out = factor * out + (1 - factor) * image.to(device)
|
|
|
|
return (out.to(comfy.model_management.intermediate_device()),)
|
|
|
|
"""
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
Utilities
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
"""
|
|
|
|
class ImageToDevice:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"device": (["auto", "cpu", "gpu"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image utils"
|
|
|
|
def execute(self, image, device):
|
|
if "gpu" == device:
|
|
device = comfy.model_management.get_torch_device()
|
|
elif "auto" == device:
|
|
device = comfy.model_management.intermediate_device()
|
|
else:
|
|
device = 'cpu'
|
|
|
|
image = image.clone().to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
return (image,)
|
|
|
|
class GetImageSize:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("INT", "INT", "INT",)
|
|
RETURN_NAMES = ("width", "height", "count")
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image utils"
|
|
|
|
def execute(self, image):
|
|
return (image.shape[2], image.shape[1], image.shape[0])
|
|
|
|
class ImageRemoveAlpha:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image utils"
|
|
|
|
def execute(self, image):
|
|
if image.shape[3] == 4:
|
|
image = image[..., :3]
|
|
return (image,)
|
|
|
|
class ImagePreviewFromLatent(SaveImage):
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
self.type = "temp"
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
self.compress_level = 1
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"latent": ("LATENT",),
|
|
"vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64})
|
|
}, "optional": {
|
|
"image": (["none"], {"image_upload": False}),
|
|
}, "hidden": {
|
|
"prompt": "PROMPT",
|
|
"extra_pnginfo": "EXTRA_PNGINFO",
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
|
|
RETURN_NAMES = ("IMAGE", "MASK", "width", "height",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image utils"
|
|
|
|
def execute(self, latent, vae, tile_size, prompt=None, extra_pnginfo=None, image=None, filename_prefix="ComfyUI"):
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
ui = None
|
|
|
|
if image.startswith("clipspace"):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
if not os.path.exists(image_path):
|
|
raise ValueError(f"Clipspace image does not exist anymore, select 'none' in the image field.")
|
|
|
|
img = pillow(Image.open, image_path)
|
|
img = pillow(ImageOps.exif_transpose, img)
|
|
if img.mode == "I":
|
|
img = img.point(lambda i: i * (1 / 255))
|
|
image = img.convert("RGB")
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
if "A" in img.getbands():
|
|
mask = np.array(img.getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
ui = {
|
|
"filename": os.path.basename(image_path),
|
|
"subfolder": os.path.dirname(image_path),
|
|
"type": "temp",
|
|
}
|
|
else:
|
|
if tile_size > 0:
|
|
tile_size = max(tile_size, 320)
|
|
image = vae.decode_tiled(latent["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, )
|
|
else:
|
|
image = vae.decode(latent["samples"])
|
|
ui = self.save_images(image, filename_prefix, prompt, extra_pnginfo)
|
|
|
|
out = {**ui, "result": (image, mask, image.shape[2], image.shape[1],)}
|
|
return out
|
|
|
|
class NoiseFromImage:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"noise_strenght": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
|
"noise_size": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
|
"color_noise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
|
"mask_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
|
"mask_scale_diff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
|
"mask_contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
|
|
"saturation": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
|
|
"contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
|
|
"blur": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1 }),
|
|
},
|
|
"optional": {
|
|
"noise_mask": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "essentials/image utils"
|
|
|
|
def execute(self, image, noise_size, color_noise, mask_strength, mask_scale_diff, mask_contrast, noise_strenght, saturation, contrast, blur, noise_mask=None):
|
|
torch.manual_seed(0)
|
|
|
|
elastic_alpha = max(image.shape[1], image.shape[2])
|
|
elastic_sigma = elastic_alpha / 400 * noise_size
|
|
|
|
blur_size = int(6 * blur+1)
|
|
if blur_size % 2 == 0:
|
|
blur_size+= 1
|
|
|
|
if noise_mask is None:
|
|
noise_mask = image
|
|
|
|
|
|
if mask_contrast != 1:
|
|
noise_mask = T.ColorJitter(contrast=(mask_contrast,mask_contrast))(noise_mask.permute([0, 3, 1, 2])).permute([0, 2, 3, 1])
|
|
|
|
|
|
if noise_mask.shape[1:] != image.shape[1:]:
|
|
noise_mask = F.interpolate(noise_mask.permute([0, 3, 1, 2]), size=(image.shape[1], image.shape[2]), mode='bicubic', align_corners=False)
|
|
noise_mask = noise_mask.permute([0, 2, 3, 1])
|
|
|
|
if noise_mask.shape[0] > image.shape[0]:
|
|
noise_mask = noise_mask[:image.shape[0]]
|
|
else:
|
|
noise_mask = torch.cat((noise_mask, noise_mask[-1:].repeat((image.shape[0]-noise_mask.shape[0], 1, 1, 1))), dim=0)
|
|
|
|
|
|
noise_mask = noise_mask.mean(dim=3).unsqueeze(-1)
|
|
|
|
|
|
imgs = image.clone().permute([0, 3, 1, 2])
|
|
if color_noise > 0:
|
|
color_noise = torch.normal(torch.zeros_like(imgs), std=color_noise)
|
|
color_noise *= (imgs - imgs.min()) / (imgs.max() - imgs.min())
|
|
|
|
imgs = imgs + color_noise
|
|
imgs = imgs.clamp(0, 1)
|
|
|
|
|
|
fine_noise = []
|
|
for n in imgs:
|
|
avg_color = n.mean(dim=[1,2])
|
|
|
|
tmp_noise = T.ElasticTransform(alpha=elastic_alpha, sigma=elastic_sigma, fill=avg_color.tolist())(n)
|
|
if blur > 0:
|
|
tmp_noise = T.GaussianBlur(blur_size, blur)(tmp_noise)
|
|
tmp_noise = T.ColorJitter(contrast=(contrast,contrast), saturation=(saturation,saturation))(tmp_noise)
|
|
fine_noise.append(tmp_noise)
|
|
|
|
imgs = None
|
|
del imgs
|
|
|
|
fine_noise = torch.stack(fine_noise, dim=0)
|
|
fine_noise = fine_noise.permute([0, 2, 3, 1])
|
|
|
|
|
|
mask_scale_diff = min(mask_scale_diff, 0.99)
|
|
if mask_scale_diff > 0:
|
|
coarse_noise = F.interpolate(fine_noise.permute([0, 3, 1, 2]), scale_factor=1-mask_scale_diff, mode='area')
|
|
coarse_noise = F.interpolate(coarse_noise, size=(fine_noise.shape[1], fine_noise.shape[2]), mode='bilinear', align_corners=False)
|
|
coarse_noise = coarse_noise.permute([0, 2, 3, 1])
|
|
else:
|
|
coarse_noise = fine_noise
|
|
|
|
output = (1 - noise_mask) * coarse_noise + noise_mask * fine_noise
|
|
|
|
if mask_strength < 1:
|
|
noise_mask = noise_mask.pow(mask_strength)
|
|
noise_mask = torch.nan_to_num(noise_mask).clamp(0, 1)
|
|
output = noise_mask * output + (1 - noise_mask) * image
|
|
|
|
|
|
output = output * noise_strenght + image * (1 - noise_strenght)
|
|
output = output.clamp(0, 1)
|
|
|
|
return (output, )
|
|
|
|
IMAGE_CLASS_MAPPINGS = {
|
|
|
|
"ImageEnhanceDifference+": ImageEnhanceDifference,
|
|
|
|
|
|
"ImageBatchMultiple+": ImageBatchMultiple,
|
|
"ImageExpandBatch+": ImageExpandBatch,
|
|
"ImageFromBatch+": ImageFromBatch,
|
|
"ImageListToBatch+": ImageListToBatch,
|
|
"ImageBatchToList+": ImageBatchToList,
|
|
|
|
|
|
"ImageCompositeFromMaskBatch+": ImageCompositeFromMaskBatch,
|
|
"ImageComposite+": ImageComposite,
|
|
"ImageCrop+": ImageCrop,
|
|
"ImageFlip+": ImageFlip,
|
|
"ImageRandomTransform+": ImageRandomTransform,
|
|
"ImageRemoveAlpha+": ImageRemoveAlpha,
|
|
"ImageRemoveBackground+": ImageRemoveBackground,
|
|
"ImageResize+": ImageResize,
|
|
"ImageSeamCarving+": ImageSeamCarving,
|
|
"ImageTile+": ImageTile,
|
|
"ImageUntile+": ImageUntile,
|
|
"RemBGSession+": RemBGSession,
|
|
"TransparentBGSession+": TransparentBGSession,
|
|
|
|
|
|
"ImageApplyLUT+": ImageApplyLUT,
|
|
"ImageCASharpening+": ImageCAS,
|
|
"ImageDesaturate+": ImageDesaturate,
|
|
"PixelOEPixelize+": PixelOEPixelize,
|
|
"ImagePosterize+": ImagePosterize,
|
|
"ImageColorMatch+": ImageColorMatch,
|
|
"ImageColorMatchAdobe+": ImageColorMatchAdobe,
|
|
"ImageHistogramMatch+": ImageHistogramMatch,
|
|
"ImageSmartSharpen+": ImageSmartSharpen,
|
|
|
|
|
|
"GetImageSize+": GetImageSize,
|
|
"ImageToDevice+": ImageToDevice,
|
|
"ImagePreviewFromLatent+": ImagePreviewFromLatent,
|
|
"NoiseFromImage+": NoiseFromImage,
|
|
|
|
}
|
|
|
|
IMAGE_NAME_MAPPINGS = {
|
|
|
|
"ImageEnhanceDifference+": "π§ Image Enhance Difference",
|
|
|
|
|
|
"ImageBatchMultiple+": "π§ Images Batch Multiple",
|
|
"ImageExpandBatch+": "π§ Image Expand Batch",
|
|
"ImageFromBatch+": "π§ Image From Batch",
|
|
"ImageListToBatch+": "π§ Image List To Batch",
|
|
"ImageBatchToList+": "π§ Image Batch To List",
|
|
|
|
|
|
"ImageCompositeFromMaskBatch+": "π§ Image Composite From Mask Batch",
|
|
"ImageComposite+": "π§ Image Composite",
|
|
"ImageCrop+": "π§ Image Crop",
|
|
"ImageFlip+": "π§ Image Flip",
|
|
"ImageRandomTransform+": "π§ Image Random Transform",
|
|
"ImageRemoveAlpha+": "π§ Image Remove Alpha",
|
|
"ImageRemoveBackground+": "π§ Image Remove Background",
|
|
"ImageResize+": "π§ Image Resize",
|
|
"ImageSeamCarving+": "π§ Image Seam Carving",
|
|
"ImageTile+": "π§ Image Tile",
|
|
"ImageUntile+": "π§ Image Untile",
|
|
"RemBGSession+": "π§ RemBG Session",
|
|
"TransparentBGSession+": "π§ InSPyReNet TransparentBG",
|
|
|
|
|
|
"ImageApplyLUT+": "π§ Image Apply LUT",
|
|
"ImageCASharpening+": "π§ Image Contrast Adaptive Sharpening",
|
|
"ImageDesaturate+": "π§ Image Desaturate",
|
|
"PixelOEPixelize+": "π§ Pixelize",
|
|
"ImagePosterize+": "π§ Image Posterize",
|
|
"ImageColorMatch+": "π§ Image Color Match",
|
|
"ImageColorMatchAdobe+": "π§ Image Color Match Adobe",
|
|
"ImageHistogramMatch+": "π§ Image Histogram Match",
|
|
"ImageSmartSharpen+": "π§ Image Smart Sharpen",
|
|
|
|
|
|
"GetImageSize+": "π§ Get Image Size",
|
|
"ImageToDevice+": "π§ Image To Device",
|
|
"ImagePreviewFromLatent+": "π§ Image Preview From Latent",
|
|
"NoiseFromImage+": "π§ Noise From Image",
|
|
}
|
|
|