|  | import torch | 
					
						
						|  | import math | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from comfy.ldm.modules.attention import optimized_attention | 
					
						
						|  | from .utils import tensor_to_size | 
					
						
						|  |  | 
					
						
						|  | class Attn2Replace: | 
					
						
						|  | def __init__(self, callback=None, **kwargs): | 
					
						
						|  | self.callback = [callback] | 
					
						
						|  | self.kwargs = [kwargs] | 
					
						
						|  |  | 
					
						
						|  | def add(self, callback, **kwargs): | 
					
						
						|  | self.callback.append(callback) | 
					
						
						|  | self.kwargs.append(kwargs) | 
					
						
						|  |  | 
					
						
						|  | for key, value in kwargs.items(): | 
					
						
						|  | setattr(self, key, value) | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, q, k, v, extra_options): | 
					
						
						|  | dtype = q.dtype | 
					
						
						|  | out = optimized_attention(q, k, v, extra_options["n_heads"]) | 
					
						
						|  | sigma = extra_options["sigmas"].detach().cpu()[0].item() if 'sigmas' in extra_options else 999999999.9 | 
					
						
						|  |  | 
					
						
						|  | for i, callback in enumerate(self.callback): | 
					
						
						|  | if sigma <= self.kwargs[i]["sigma_start"] and sigma >= self.kwargs[i]["sigma_end"]: | 
					
						
						|  | out = out + callback(out, q, k, v, extra_options, **self.kwargs[i]) | 
					
						
						|  |  | 
					
						
						|  | return out.to(dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | def instantid_attention(out, q, k, v, extra_options, module_key='', ipadapter=None, weight=1.0, cond=None, cond_alt=None, uncond=None, weight_type="linear", mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False, embeds_scaling='V only', **kwargs): | 
					
						
						|  | dtype = q.dtype | 
					
						
						|  | cond_or_uncond = extra_options["cond_or_uncond"] | 
					
						
						|  | block_type = extra_options["block"][0] | 
					
						
						|  |  | 
					
						
						|  | t_idx = extra_options["transformer_index"] | 
					
						
						|  | layers = 11 if '101_to_k_ip' in ipadapter.ip_layers.to_kvs else 16 | 
					
						
						|  | k_key = module_key + "_to_k_ip" | 
					
						
						|  | v_key = module_key + "_to_v_ip" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None | 
					
						
						|  |  | 
					
						
						|  | b = q.shape[0] | 
					
						
						|  | seq_len = q.shape[1] | 
					
						
						|  | batch_prompt = b // len(cond_or_uncond) | 
					
						
						|  | _, _, oh, ow = extra_options["original_shape"] | 
					
						
						|  |  | 
					
						
						|  | if weight_type == 'ease in': | 
					
						
						|  | weight = weight * (0.05 + 0.95 * (1 - t_idx / layers)) | 
					
						
						|  | elif weight_type == 'ease out': | 
					
						
						|  | weight = weight * (0.05 + 0.95 * (t_idx / layers)) | 
					
						
						|  | elif weight_type == 'ease in-out': | 
					
						
						|  | weight = weight * (0.05 + 0.95 * (1 - abs(t_idx - (layers/2)) / (layers/2))) | 
					
						
						|  | elif weight_type == 'reverse in-out': | 
					
						
						|  | weight = weight * (0.05 + 0.95 * (abs(t_idx - (layers/2)) / (layers/2))) | 
					
						
						|  | elif weight_type == 'weak input' and block_type == 'input': | 
					
						
						|  | weight = weight * 0.2 | 
					
						
						|  | elif weight_type == 'weak middle' and block_type == 'middle': | 
					
						
						|  | weight = weight * 0.2 | 
					
						
						|  | elif weight_type == 'weak output' and block_type == 'output': | 
					
						
						|  | weight = weight * 0.2 | 
					
						
						|  | elif weight_type == 'strong middle' and (block_type == 'input' or block_type == 'output'): | 
					
						
						|  | weight = weight * 0.2 | 
					
						
						|  | elif isinstance(weight, dict): | 
					
						
						|  | if t_idx not in weight: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | weight = weight[t_idx] | 
					
						
						|  |  | 
					
						
						|  | if cond_alt is not None and t_idx in cond_alt: | 
					
						
						|  | cond = cond_alt[t_idx] | 
					
						
						|  | del cond_alt | 
					
						
						|  |  | 
					
						
						|  | if unfold_batch: | 
					
						
						|  |  | 
					
						
						|  | if ad_params is not None and ad_params["sub_idxs"] is not None: | 
					
						
						|  | if isinstance(weight, torch.Tensor): | 
					
						
						|  | weight = tensor_to_size(weight, ad_params["full_length"]) | 
					
						
						|  | weight = torch.Tensor(weight[ad_params["sub_idxs"]]) | 
					
						
						|  | if torch.all(weight == 0): | 
					
						
						|  | return 0 | 
					
						
						|  | weight = weight.repeat(len(cond_or_uncond), 1, 1) | 
					
						
						|  | elif weight == 0: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cond.shape[0] >= ad_params["full_length"]: | 
					
						
						|  | cond = torch.Tensor(cond[ad_params["sub_idxs"]]) | 
					
						
						|  | uncond = torch.Tensor(uncond[ad_params["sub_idxs"]]) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | cond = tensor_to_size(cond, ad_params["full_length"]) | 
					
						
						|  | uncond = tensor_to_size(uncond, ad_params["full_length"]) | 
					
						
						|  | cond = cond[ad_params["sub_idxs"]] | 
					
						
						|  | uncond = uncond[ad_params["sub_idxs"]] | 
					
						
						|  | else: | 
					
						
						|  | if isinstance(weight, torch.Tensor): | 
					
						
						|  | weight = tensor_to_size(weight, batch_prompt) | 
					
						
						|  | if torch.all(weight == 0): | 
					
						
						|  | return 0 | 
					
						
						|  | weight = weight.repeat(len(cond_or_uncond), 1, 1) | 
					
						
						|  | elif weight == 0: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | cond = tensor_to_size(cond, batch_prompt) | 
					
						
						|  | uncond = tensor_to_size(uncond, batch_prompt) | 
					
						
						|  |  | 
					
						
						|  | k_cond = ipadapter.ip_layers.to_kvs[k_key](cond) | 
					
						
						|  | k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond) | 
					
						
						|  | v_cond = ipadapter.ip_layers.to_kvs[v_key](cond) | 
					
						
						|  | v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if isinstance(weight, torch.Tensor): | 
					
						
						|  | weight = tensor_to_size(weight, batch_prompt) | 
					
						
						|  | if torch.all(weight == 0): | 
					
						
						|  | return 0 | 
					
						
						|  | weight = weight.repeat(len(cond_or_uncond), 1, 1) | 
					
						
						|  | elif weight == 0: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | k_cond = ipadapter.ip_layers.to_kvs[k_key](cond).repeat(batch_prompt, 1, 1) | 
					
						
						|  | k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond).repeat(batch_prompt, 1, 1) | 
					
						
						|  | v_cond = ipadapter.ip_layers.to_kvs[v_key](cond).repeat(batch_prompt, 1, 1) | 
					
						
						|  | v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond).repeat(batch_prompt, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0) | 
					
						
						|  | ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0) | 
					
						
						|  |  | 
					
						
						|  | if embeds_scaling == 'K+mean(V) w/ C penalty': | 
					
						
						|  | scaling = float(ip_k.shape[2]) / 1280.0 | 
					
						
						|  | weight = weight * scaling | 
					
						
						|  | ip_k = ip_k * weight | 
					
						
						|  | ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True) | 
					
						
						|  | ip_v = (ip_v - ip_v_mean) + ip_v_mean * weight | 
					
						
						|  | out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | 
					
						
						|  | del ip_v_mean | 
					
						
						|  | elif embeds_scaling == 'K+V w/ C penalty': | 
					
						
						|  | scaling = float(ip_k.shape[2]) / 1280.0 | 
					
						
						|  | weight = weight * scaling | 
					
						
						|  | ip_k = ip_k * weight | 
					
						
						|  | ip_v = ip_v * weight | 
					
						
						|  | out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | 
					
						
						|  | elif embeds_scaling == 'K+V': | 
					
						
						|  | ip_k = ip_k * weight | 
					
						
						|  | ip_v = ip_v * weight | 
					
						
						|  | out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"]) | 
					
						
						|  | out_ip = out_ip * weight | 
					
						
						|  |  | 
					
						
						|  | if mask is not None: | 
					
						
						|  | mask_h = oh / math.sqrt(oh * ow / seq_len) | 
					
						
						|  | mask_h = int(mask_h) + int((seq_len % int(mask_h)) != 0) | 
					
						
						|  | mask_w = seq_len // mask_h | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None): | 
					
						
						|  |  | 
					
						
						|  | if mask.shape[0] >= ad_params["full_length"]: | 
					
						
						|  | mask = torch.Tensor(mask[ad_params["sub_idxs"]]) | 
					
						
						|  | mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  | mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | 
					
						
						|  | mask = tensor_to_size(mask, ad_params["full_length"]) | 
					
						
						|  | mask = mask[ad_params["sub_idxs"]] | 
					
						
						|  | else: | 
					
						
						|  | mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1) | 
					
						
						|  | mask = tensor_to_size(mask, batch_prompt) | 
					
						
						|  |  | 
					
						
						|  | mask = mask.repeat(len(cond_or_uncond), 1, 1) | 
					
						
						|  | mask = mask.view(mask.shape[0], -1, 1).repeat(1, 1, out.shape[2]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_len = mask_h * mask_w | 
					
						
						|  | if mask_len < seq_len: | 
					
						
						|  | pad_len = seq_len - mask_len | 
					
						
						|  | pad1 = pad_len // 2 | 
					
						
						|  | pad2 = pad_len - pad1 | 
					
						
						|  | mask = F.pad(mask, (0, 0, pad1, pad2), value=0.0) | 
					
						
						|  | elif mask_len > seq_len: | 
					
						
						|  | crop_start = (mask_len - seq_len) // 2 | 
					
						
						|  | mask = mask[:, crop_start:crop_start+seq_len, :] | 
					
						
						|  |  | 
					
						
						|  | out_ip = out_ip * mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return out_ip.to(dtype=dtype) | 
					
						
						|  |  |