|
|
|
|
|
from enum import Enum
|
|
from typing import Optional, Tuple
|
|
|
|
import numba as nb
|
|
import numpy as np
|
|
from scipy.ndimage import sobel
|
|
|
|
DROP_MASK_ENERGY = 1e5
|
|
KEEP_MASK_ENERGY = 1e3
|
|
|
|
|
|
class OrderMode(str, Enum):
|
|
WIDTH_FIRST = "width-first"
|
|
HEIGHT_FIRST = "height-first"
|
|
|
|
|
|
class EnergyMode(str, Enum):
|
|
FORWARD = "forward"
|
|
BACKWARD = "backward"
|
|
|
|
|
|
def _list_enum(enum_class) -> Tuple:
|
|
return tuple(x.value for x in enum_class)
|
|
|
|
|
|
def _rgb2gray(rgb: np.ndarray) -> np.ndarray:
|
|
"""Convert an RGB image to a grayscale image"""
|
|
coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=np.float32)
|
|
return (rgb @ coeffs).astype(rgb.dtype)
|
|
|
|
|
|
def _get_seam_mask(src: np.ndarray, seam: np.ndarray) -> np.ndarray:
|
|
"""Convert a list of seam column indices to a mask"""
|
|
return np.eye(src.shape[1], dtype=bool)[seam]
|
|
|
|
|
|
def _remove_seam_mask(src: np.ndarray, seam_mask: np.ndarray) -> np.ndarray:
|
|
"""Remove a seam from the source image according to the given seam_mask"""
|
|
if src.ndim == 3:
|
|
h, w, c = src.shape
|
|
seam_mask = np.broadcast_to(seam_mask[:, :, None], src.shape)
|
|
dst = src[~seam_mask].reshape((h, w - 1, c))
|
|
else:
|
|
h, w = src.shape
|
|
dst = src[~seam_mask].reshape((h, w - 1))
|
|
return dst
|
|
|
|
|
|
def _get_energy(gray: np.ndarray) -> np.ndarray:
|
|
"""Get backward energy map from the source image"""
|
|
assert gray.ndim == 2
|
|
|
|
gray = gray.astype(np.float32)
|
|
grad_x = sobel(gray, axis=1)
|
|
grad_y = sobel(gray, axis=0)
|
|
energy = np.abs(grad_x) + np.abs(grad_y)
|
|
return energy
|
|
|
|
|
|
@nb.njit(nb.int32[:](nb.float32[:, :]), cache=True)
|
|
def _get_backward_seam(energy: np.ndarray) -> np.ndarray:
|
|
"""Compute the minimum vertical seam from the backward energy map"""
|
|
h, w = energy.shape
|
|
inf = np.array([np.inf], dtype=np.float32)
|
|
cost = np.concatenate((inf, energy[0], inf))
|
|
parent = np.empty((h, w), dtype=np.int32)
|
|
base_idx = np.arange(-1, w - 1, dtype=np.int32)
|
|
|
|
for r in range(1, h):
|
|
choices = np.vstack((cost[:-2], cost[1:-1], cost[2:]))
|
|
min_idx = np.argmin(choices, axis=0) + base_idx
|
|
parent[r] = min_idx
|
|
cost[1:-1] = cost[1:-1][min_idx] + energy[r]
|
|
|
|
c = np.argmin(cost[1:-1])
|
|
seam = np.empty(h, dtype=np.int32)
|
|
for r in range(h - 1, -1, -1):
|
|
seam[r] = c
|
|
c = parent[r, c]
|
|
|
|
return seam
|
|
|
|
|
|
def _get_backward_seams(
|
|
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
|
|
) -> np.ndarray:
|
|
"""Compute the minimum N vertical seams using backward energy"""
|
|
h, w = gray.shape
|
|
seams = np.zeros((h, w), dtype=bool)
|
|
rows = np.arange(h, dtype=np.int32)
|
|
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
|
|
energy = _get_energy(gray)
|
|
if aux_energy is not None:
|
|
energy += aux_energy
|
|
for _ in range(num_seams):
|
|
seam = _get_backward_seam(energy)
|
|
seams[rows, idx_map[rows, seam]] = True
|
|
|
|
seam_mask = _get_seam_mask(gray, seam)
|
|
gray = _remove_seam_mask(gray, seam_mask)
|
|
idx_map = _remove_seam_mask(idx_map, seam_mask)
|
|
if aux_energy is not None:
|
|
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
|
|
|
|
|
|
_, cur_w = energy.shape
|
|
lo = max(0, np.min(seam) - 1)
|
|
hi = min(cur_w, np.max(seam) + 1)
|
|
pad_lo = 1 if lo > 0 else 0
|
|
pad_hi = 1 if hi < cur_w - 1 else 0
|
|
mid_block = gray[:, lo - pad_lo : hi + pad_hi]
|
|
_, mid_w = mid_block.shape
|
|
mid_energy = _get_energy(mid_block)[:, pad_lo : mid_w - pad_hi]
|
|
if aux_energy is not None:
|
|
mid_energy += aux_energy[:, lo:hi]
|
|
energy = np.hstack((energy[:, :lo], mid_energy, energy[:, hi + 1 :]))
|
|
|
|
return seams
|
|
|
|
|
|
@nb.njit(
|
|
[
|
|
nb.int32[:](nb.float32[:, :], nb.none),
|
|
nb.int32[:](nb.float32[:, :], nb.float32[:, :]),
|
|
],
|
|
cache=True,
|
|
)
|
|
def _get_forward_seam(gray: np.ndarray, aux_energy: Optional[np.ndarray]) -> np.ndarray:
|
|
"""Compute the minimum vertical seam using forward energy"""
|
|
h, w = gray.shape
|
|
|
|
gray = np.hstack((gray[:, :1], gray, gray[:, -1:]))
|
|
|
|
inf = np.array([np.inf], dtype=np.float32)
|
|
dp = np.concatenate((inf, np.abs(gray[0, 2:] - gray[0, :-2]), inf))
|
|
|
|
parent = np.empty((h, w), dtype=np.int32)
|
|
base_idx = np.arange(-1, w - 1, dtype=np.int32)
|
|
|
|
inf = np.array([np.inf], dtype=np.float32)
|
|
for r in range(1, h):
|
|
curr_shl = gray[r, 2:]
|
|
curr_shr = gray[r, :-2]
|
|
cost_mid = np.abs(curr_shl - curr_shr)
|
|
if aux_energy is not None:
|
|
cost_mid += aux_energy[r]
|
|
|
|
prev_mid = gray[r - 1, 1:-1]
|
|
cost_left = cost_mid + np.abs(prev_mid - curr_shr)
|
|
cost_right = cost_mid + np.abs(prev_mid - curr_shl)
|
|
|
|
dp_mid = dp[1:-1]
|
|
dp_left = dp[:-2]
|
|
dp_right = dp[2:]
|
|
|
|
choices = np.vstack(
|
|
(cost_left + dp_left, cost_mid + dp_mid, cost_right + dp_right)
|
|
)
|
|
min_idx = np.argmin(choices, axis=0)
|
|
parent[r] = min_idx + base_idx
|
|
|
|
|
|
for j, i in enumerate(min_idx):
|
|
dp_mid[j] = choices[i, j]
|
|
|
|
c = np.argmin(dp[1:-1])
|
|
seam = np.empty(h, dtype=np.int32)
|
|
for r in range(h - 1, -1, -1):
|
|
seam[r] = c
|
|
c = parent[r, c]
|
|
|
|
return seam
|
|
|
|
|
|
def _get_forward_seams(
|
|
gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
|
|
) -> np.ndarray:
|
|
"""Compute minimum N vertical seams using forward energy"""
|
|
h, w = gray.shape
|
|
seams = np.zeros((h, w), dtype=bool)
|
|
rows = np.arange(h, dtype=np.int32)
|
|
idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
|
|
for _ in range(num_seams):
|
|
seam = _get_forward_seam(gray, aux_energy)
|
|
seams[rows, idx_map[rows, seam]] = True
|
|
seam_mask = _get_seam_mask(gray, seam)
|
|
gray = _remove_seam_mask(gray, seam_mask)
|
|
idx_map = _remove_seam_mask(idx_map, seam_mask)
|
|
if aux_energy is not None:
|
|
aux_energy = _remove_seam_mask(aux_energy, seam_mask)
|
|
|
|
return seams
|
|
|
|
|
|
def _get_seams(
|
|
gray: np.ndarray, num_seams: int, energy_mode: str, aux_energy: Optional[np.ndarray]
|
|
) -> np.ndarray:
|
|
"""Get the minimum N seams from the grayscale image"""
|
|
gray = np.asarray(gray, dtype=np.float32)
|
|
if energy_mode == EnergyMode.BACKWARD:
|
|
return _get_backward_seams(gray, num_seams, aux_energy)
|
|
elif energy_mode == EnergyMode.FORWARD:
|
|
return _get_forward_seams(gray, num_seams, aux_energy)
|
|
else:
|
|
raise ValueError(
|
|
f"expect energy_mode to be one of {_list_enum(EnergyMode)}, got {energy_mode}"
|
|
)
|
|
|
|
|
|
def _reduce_width(
|
|
src: np.ndarray,
|
|
delta_width: int,
|
|
energy_mode: str,
|
|
aux_energy: Optional[np.ndarray],
|
|
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
|
"""Reduce the width of image by delta_width pixels"""
|
|
assert src.ndim in (2, 3) and delta_width >= 0
|
|
if src.ndim == 2:
|
|
gray = src
|
|
src_h, src_w = src.shape
|
|
dst_shape: Tuple[int, ...] = (src_h, src_w - delta_width)
|
|
else:
|
|
gray = _rgb2gray(src)
|
|
src_h, src_w, src_c = src.shape
|
|
dst_shape = (src_h, src_w - delta_width, src_c)
|
|
|
|
to_keep = ~_get_seams(gray, delta_width, energy_mode, aux_energy)
|
|
dst = src[to_keep].reshape(dst_shape)
|
|
if aux_energy is not None:
|
|
aux_energy = aux_energy[to_keep].reshape(dst_shape[:2])
|
|
return dst, aux_energy
|
|
|
|
|
|
@nb.njit(
|
|
nb.float32[:, :, :](nb.float32[:, :, :], nb.boolean[:, :], nb.int32), cache=True
|
|
)
|
|
def _insert_seams_kernel(
|
|
src: np.ndarray, seams: np.ndarray, delta_width: int
|
|
) -> np.ndarray:
|
|
"""The numba kernel for inserting seams"""
|
|
src_h, src_w, src_c = src.shape
|
|
dst = np.empty((src_h, src_w + delta_width, src_c), dtype=src.dtype)
|
|
for row in range(src_h):
|
|
dst_col = 0
|
|
for src_col in range(src_w):
|
|
if seams[row, src_col]:
|
|
left = src[row, max(src_col - 1, 0)]
|
|
right = src[row, src_col]
|
|
dst[row, dst_col] = (left + right) / 2
|
|
dst_col += 1
|
|
dst[row, dst_col] = src[row, src_col]
|
|
dst_col += 1
|
|
return dst
|
|
|
|
|
|
def _insert_seams(src: np.ndarray, seams: np.ndarray, delta_width: int) -> np.ndarray:
|
|
"""Insert multiple seams into the source image"""
|
|
dst = src.astype(np.float32)
|
|
if dst.ndim == 2:
|
|
dst = dst[:, :, None]
|
|
dst = _insert_seams_kernel(dst, seams, delta_width).astype(src.dtype)
|
|
if src.ndim == 2:
|
|
dst = dst.squeeze(-1)
|
|
return dst
|
|
|
|
|
|
def _expand_width(
|
|
src: np.ndarray,
|
|
delta_width: int,
|
|
energy_mode: str,
|
|
aux_energy: Optional[np.ndarray],
|
|
step_ratio: float,
|
|
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
|
"""Expand the width of image by delta_width pixels"""
|
|
assert src.ndim in (2, 3) and delta_width >= 0
|
|
if not 0 < step_ratio <= 1:
|
|
raise ValueError(f"expect `step_ratio` to be between (0,1], got {step_ratio}")
|
|
|
|
dst = src
|
|
while delta_width > 0:
|
|
max_step_size = max(1, round(step_ratio * dst.shape[1]))
|
|
step_size = min(max_step_size, delta_width)
|
|
gray = dst if dst.ndim == 2 else _rgb2gray(dst)
|
|
seams = _get_seams(gray, step_size, energy_mode, aux_energy)
|
|
dst = _insert_seams(dst, seams, step_size)
|
|
if aux_energy is not None:
|
|
aux_energy = _insert_seams(aux_energy, seams, step_size)
|
|
delta_width -= step_size
|
|
|
|
return dst, aux_energy
|
|
|
|
|
|
def _resize_width(
|
|
src: np.ndarray,
|
|
width: int,
|
|
energy_mode: str,
|
|
aux_energy: Optional[np.ndarray],
|
|
step_ratio: float,
|
|
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
|
"""Resize the width of image by removing vertical seams"""
|
|
assert src.size > 0 and src.ndim in (2, 3)
|
|
assert width > 0
|
|
|
|
src_w = src.shape[1]
|
|
if src_w < width:
|
|
dst, aux_energy = _expand_width(
|
|
src, width - src_w, energy_mode, aux_energy, step_ratio
|
|
)
|
|
else:
|
|
dst, aux_energy = _reduce_width(src, src_w - width, energy_mode, aux_energy)
|
|
return dst, aux_energy
|
|
|
|
|
|
def _transpose_image(src: np.ndarray) -> np.ndarray:
|
|
"""Transpose a source image in rgb or grayscale format"""
|
|
if src.ndim == 3:
|
|
dst = src.transpose((1, 0, 2))
|
|
else:
|
|
dst = src.T
|
|
return dst
|
|
|
|
|
|
def _resize_height(
|
|
src: np.ndarray,
|
|
height: int,
|
|
energy_mode: str,
|
|
aux_energy: Optional[np.ndarray],
|
|
step_ratio: float,
|
|
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
|
"""Resize the height of image by removing horizontal seams"""
|
|
assert src.ndim in (2, 3) and height > 0
|
|
if aux_energy is not None:
|
|
aux_energy = aux_energy.T
|
|
src = _transpose_image(src)
|
|
src, aux_energy = _resize_width(src, height, energy_mode, aux_energy, step_ratio)
|
|
src = _transpose_image(src)
|
|
if aux_energy is not None:
|
|
aux_energy = aux_energy.T
|
|
return src, aux_energy
|
|
|
|
|
|
def _check_mask(mask: np.ndarray, shape: Tuple[int, ...]) -> np.ndarray:
|
|
"""Ensure the mask to be a 2D grayscale map of specific shape"""
|
|
mask = np.asarray(mask, dtype=bool)
|
|
if mask.ndim != 2:
|
|
raise ValueError(f"expect mask to be a 2d binary map, got shape {mask.shape}")
|
|
if mask.shape != shape:
|
|
raise ValueError(
|
|
f"expect the shape of mask to match the image, got {mask.shape} vs {shape}"
|
|
)
|
|
return mask
|
|
|
|
|
|
def _check_src(src: np.ndarray) -> np.ndarray:
|
|
"""Ensure the source to be RGB or grayscale"""
|
|
src = np.asarray(src)
|
|
if src.size == 0 or src.ndim not in (2, 3):
|
|
raise ValueError(
|
|
f"expect a 3d rgb image or a 2d grayscale image, got image in shape {src.shape}"
|
|
)
|
|
return src
|
|
|
|
|
|
def seam_carving(
|
|
src: np.ndarray,
|
|
size: Optional[Tuple[int, int]] = None,
|
|
energy_mode: str = "backward",
|
|
order: str = "width-first",
|
|
keep_mask: Optional[np.ndarray] = None,
|
|
drop_mask: Optional[np.ndarray] = None,
|
|
step_ratio: float = 0.5,
|
|
) -> np.ndarray:
|
|
"""Resize the image using the content-aware seam-carving algorithm.
|
|
|
|
:param src: A source image in RGB or grayscale format.
|
|
:param size: The target size in pixels, as a 2-tuple (width, height).
|
|
:param energy_mode: Policy to compute energy for the source image. Could be
|
|
one of ``backward`` or ``forward``. If ``backward``, compute the energy
|
|
as the gradient at each pixel. If ``forward``, compute the energy as the
|
|
distances between adjacent pixels after each pixel is removed.
|
|
:param order: The order to remove horizontal and vertical seams. Could be
|
|
one of ``width-first`` or ``height-first``. In ``width-first`` mode, we
|
|
remove or insert all vertical seams first, then the horizontal ones,
|
|
while ``height-first`` is the opposite.
|
|
:param keep_mask: An optional mask where the foreground is protected from
|
|
seam removal. If not specified, no area will be protected.
|
|
:param drop_mask: An optional binary object mask to remove. If given, the
|
|
object will be removed before resizing the image to the target size.
|
|
:param step_ratio: The maximum size expansion ratio in one seam carving step.
|
|
The image will be expanded in multiple steps if target size is too large.
|
|
:return: A resized copy of the source image.
|
|
"""
|
|
src = _check_src(src)
|
|
|
|
if order not in _list_enum(OrderMode):
|
|
raise ValueError(
|
|
f"expect order to be one of {_list_enum(OrderMode)}, got {order}"
|
|
)
|
|
|
|
aux_energy = None
|
|
|
|
if keep_mask is not None:
|
|
keep_mask = _check_mask(keep_mask, src.shape[:2])
|
|
|
|
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
|
|
aux_energy[keep_mask] += KEEP_MASK_ENERGY
|
|
|
|
|
|
if drop_mask is not None:
|
|
drop_mask = _check_mask(drop_mask, src.shape[:2])
|
|
|
|
if aux_energy is None:
|
|
aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
|
|
aux_energy[drop_mask] -= DROP_MASK_ENERGY
|
|
|
|
if order == OrderMode.HEIGHT_FIRST:
|
|
src = _transpose_image(src)
|
|
aux_energy = aux_energy.T
|
|
|
|
num_seams = (aux_energy < 0).sum(1).max()
|
|
while num_seams > 0:
|
|
src, aux_energy = _reduce_width(src, num_seams, energy_mode, aux_energy)
|
|
num_seams = (aux_energy < 0).sum(1).max()
|
|
|
|
if order == OrderMode.HEIGHT_FIRST:
|
|
src = _transpose_image(src)
|
|
aux_energy = aux_energy.T
|
|
|
|
|
|
if size is not None:
|
|
width, height = size
|
|
width = round(width)
|
|
height = round(height)
|
|
if width <= 0 or height <= 0:
|
|
raise ValueError(f"expect target size to be positive, got {size}")
|
|
|
|
if order == OrderMode.WIDTH_FIRST:
|
|
src, aux_energy = _resize_width(
|
|
src, width, energy_mode, aux_energy, step_ratio
|
|
)
|
|
src, aux_energy = _resize_height(
|
|
src, height, energy_mode, aux_energy, step_ratio
|
|
)
|
|
else:
|
|
src, aux_energy = _resize_height(
|
|
src, height, energy_mode, aux_energy, step_ratio
|
|
)
|
|
src, aux_energy = _resize_width(
|
|
src, width, energy_mode, aux_energy, step_ratio
|
|
)
|
|
|
|
return src
|
|
|