|
import os |
|
|
|
import torch |
|
|
|
import numpy as np |
|
from PIL import Image, ImageOps |
|
from .utils import BIGMAX, ControlWeights, TimestepKeyframeGroup, TimestepKeyframe, get_properly_arranged_t2i_weights |
|
from .logger import logger |
|
|
|
|
|
class LoadImagesFromDirectory: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"directory": ("STRING", {"default": ""}), |
|
}, |
|
"optional": { |
|
"image_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), |
|
"start_index": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT") |
|
FUNCTION = "load_images" |
|
|
|
CATEGORY = "" |
|
|
|
def load_images(self, directory: str, image_load_cap: int = 0, start_index: int = 0): |
|
if not os.path.isdir(directory): |
|
raise FileNotFoundError(f"Directory '{directory} cannot be found.'") |
|
dir_files = os.listdir(directory) |
|
if len(dir_files) == 0: |
|
raise FileNotFoundError(f"No files in directory '{directory}'.") |
|
|
|
dir_files = sorted(dir_files) |
|
dir_files = [os.path.join(directory, x) for x in dir_files] |
|
|
|
dir_files = dir_files[start_index:] |
|
|
|
images = [] |
|
masks = [] |
|
|
|
limit_images = False |
|
if image_load_cap > 0: |
|
limit_images = True |
|
image_count = 0 |
|
|
|
for image_path in dir_files: |
|
if os.path.isdir(image_path): |
|
continue |
|
if limit_images and image_count >= image_load_cap: |
|
break |
|
i = Image.open(image_path) |
|
i = ImageOps.exif_transpose(i) |
|
image = i.convert("RGB") |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image)[None,] |
|
if 'A' in i.getbands(): |
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 |
|
mask = 1. - torch.from_numpy(mask) |
|
else: |
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") |
|
images.append(image) |
|
masks.append(mask) |
|
image_count += 1 |
|
|
|
if len(images) == 0: |
|
raise FileNotFoundError(f"No images could be loaded from directory '{directory}'.") |
|
|
|
return (torch.cat(images, dim=0), torch.stack(masks, dim=0), image_count) |
|
|
|
|
|
class ScaledSoftUniversalWeightsDeprecated: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"base_multiplier": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 1.0, "step": 0.001}, ), |
|
"flip_weights": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), |
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",), |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) |
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") |
|
FUNCTION = "load_weights" |
|
|
|
CATEGORY = "" |
|
|
|
def load_weights(self, base_multiplier, flip_weights, uncond_multiplier: float=1.0, cn_extras: dict[str]={}): |
|
weights = ControlWeights.universal(base_multiplier=base_multiplier, uncond_multiplier=uncond_multiplier, extras=cn_extras) |
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) |
|
|
|
|
|
class SoftControlNetWeightsDeprecated: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"weight_00": ("FLOAT", {"default": 0.09941396206337118, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_01": ("FLOAT", {"default": 0.12050177219802567, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_02": ("FLOAT", {"default": 0.14606275417942507, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_03": ("FLOAT", {"default": 0.17704576264172736, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_04": ("FLOAT", {"default": 0.214600924414215, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_05": ("FLOAT", {"default": 0.26012233262329093, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_06": ("FLOAT", {"default": 0.3152997971191405, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_07": ("FLOAT", {"default": 0.3821815722656249, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_08": ("FLOAT", {"default": 0.4632503906249999, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_09": ("FLOAT", {"default": 0.561515625, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_10": ("FLOAT", {"default": 0.6806249999999999, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_11": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"flip_weights": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), |
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",), |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
DEPRECATED = True |
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) |
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") |
|
FUNCTION = "load_weights" |
|
|
|
CATEGORY = "" |
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, |
|
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, |
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}): |
|
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, |
|
weight_07, weight_08, weight_09, weight_10, weight_11] |
|
weights_middle = [weight_12] |
|
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras) |
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) |
|
|
|
|
|
class CustomControlNetWeightsDeprecated: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_04": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_05": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_06": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_07": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_08": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_09": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_10": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_11": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_12": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"flip_weights": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), |
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",), |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
DEPRECATED = True |
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) |
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") |
|
FUNCTION = "load_weights" |
|
|
|
CATEGORY = "" |
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, |
|
weight_07, weight_08, weight_09, weight_10, weight_11, weight_12, flip_weights, |
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}): |
|
weights_output = [weight_00, weight_01, weight_02, weight_03, weight_04, weight_05, weight_06, |
|
weight_07, weight_08, weight_09, weight_10, weight_11] |
|
weights_middle = [weight_12] |
|
weights = ControlWeights.controlnet(weights_output=weights_output, weights_middle=weights_middle, uncond_multiplier=uncond_multiplier, extras=cn_extras) |
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) |
|
|
|
|
|
class SoftT2IAdapterWeightsDeprecated: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"weight_00": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_01": ("FLOAT", {"default": 0.62, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_02": ("FLOAT", {"default": 0.825, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"flip_weights": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), |
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",), |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
DEPRECATED = True |
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) |
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") |
|
FUNCTION = "load_weights" |
|
|
|
CATEGORY = "" |
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, |
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}): |
|
weights = [weight_00, weight_01, weight_02, weight_03] |
|
weights = get_properly_arranged_t2i_weights(weights) |
|
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) |
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) |
|
|
|
|
|
class CustomT2IAdapterWeightsDeprecated: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"weight_00": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_01": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_02": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"weight_03": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}, ), |
|
"flip_weights": ("BOOLEAN", {"default": False}), |
|
}, |
|
"optional": { |
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ), |
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",), |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
DEPRECATED = True |
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",) |
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT") |
|
FUNCTION = "load_weights" |
|
|
|
CATEGORY = "" |
|
|
|
def load_weights(self, weight_00, weight_01, weight_02, weight_03, flip_weights, |
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}): |
|
weights = [weight_00, weight_01, weight_02, weight_03] |
|
weights = get_properly_arranged_t2i_weights(weights) |
|
weights = ControlWeights.t2iadapter(weights_input=weights, uncond_multiplier=uncond_multiplier, extras=cn_extras) |
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights))) |
|
|