Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Pratik Bhavsar
commited on
Commit
·
c411387
1
Parent(s):
5f94245
cleaned up v1
Browse files- app.py +0 -26
- data_loader.py +2 -2
- results.csv → results_v1.csv +0 -0
- tabs/data_exploration.py +0 -810
- tabs/leaderboard.py +1 -1
app.py
CHANGED
@@ -14,8 +14,6 @@ from data_loader import (
|
|
14 |
SCORES,
|
15 |
)
|
16 |
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
|
17 |
-
from tabs.model_comparison import create_model_comparison_tab, compare_models
|
18 |
-
from tabs.data_exploration import create_exploration_tab, filter_and_display
|
19 |
|
20 |
|
21 |
def create_app():
|
@@ -32,10 +30,6 @@ def create_app():
|
|
32 |
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
33 |
)
|
34 |
|
35 |
-
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT)
|
36 |
-
|
37 |
-
exp_outputs = create_exploration_tab(df)
|
38 |
-
|
39 |
# Initial loads
|
40 |
app.load(
|
41 |
fn=lambda: filter_leaderboard(
|
@@ -44,26 +38,6 @@ def create_app():
|
|
44 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
45 |
)
|
46 |
|
47 |
-
app.load(
|
48 |
-
fn=lambda: compare_models(
|
49 |
-
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
50 |
-
),
|
51 |
-
outputs=[mc_info, mc_plot],
|
52 |
-
)
|
53 |
-
|
54 |
-
app.load(
|
55 |
-
fn=lambda: filter_and_display(
|
56 |
-
MODELS[0],
|
57 |
-
DATASETS[0],
|
58 |
-
min(SCORES),
|
59 |
-
max(SCORES),
|
60 |
-
0,
|
61 |
-
0,
|
62 |
-
0,
|
63 |
-
),
|
64 |
-
outputs=exp_outputs[:-1],
|
65 |
-
)
|
66 |
-
|
67 |
return app
|
68 |
|
69 |
|
|
|
14 |
SCORES,
|
15 |
)
|
16 |
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
|
|
|
|
|
17 |
|
18 |
|
19 |
def create_app():
|
|
|
30 |
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
31 |
)
|
32 |
|
|
|
|
|
|
|
|
|
33 |
# Initial loads
|
34 |
app.load(
|
35 |
fn=lambda: filter_leaderboard(
|
|
|
38 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
39 |
)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return app
|
42 |
|
43 |
|
data_loader.py
CHANGED
@@ -23,7 +23,7 @@ SCORES = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
|
23 |
|
24 |
def load_data():
|
25 |
"""Load and preprocess the data."""
|
26 |
-
df = pd.read_csv("
|
27 |
|
28 |
# Add combined I/O cost column with 3:1 ratio
|
29 |
df["IO Cost"] = (
|
@@ -596,7 +596,7 @@ HEADER_CONTENT = (
|
|
596 |
<div class="header-content">
|
597 |
<div class="title-section">
|
598 |
|
599 |
-
<div class="title-gradient">Agent Leaderboard</div>
|
600 |
|
601 |
<div class="description">
|
602 |
GenAI is evolving rapidly with developers building high ROI agents. <br>
|
|
|
23 |
|
24 |
def load_data():
|
25 |
"""Load and preprocess the data."""
|
26 |
+
df = pd.read_csv("results_v1.csv").dropna()
|
27 |
|
28 |
# Add combined I/O cost column with 3:1 ratio
|
29 |
df["IO Cost"] = (
|
|
|
596 |
<div class="header-content">
|
597 |
<div class="title-section">
|
598 |
|
599 |
+
<div class="title-gradient">Agent Leaderboard v1</div>
|
600 |
|
601 |
<div class="description">
|
602 |
GenAI is evolving rapidly with developers building high ROI agents. <br>
|
results.csv → results_v1.csv
RENAMED
File without changes
|
tabs/data_exploration.py
DELETED
@@ -1,810 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from data_loader import MODELS, DATASETS, SCORES, HEADER_CONTENT
|
5 |
-
from chat import (
|
6 |
-
format_chat_display,
|
7 |
-
format_metrics_display,
|
8 |
-
format_tool_info,
|
9 |
-
)
|
10 |
-
|
11 |
-
|
12 |
-
def get_updated_df(df, df_output):
|
13 |
-
df = df.iloc[: len(df_output)].copy()
|
14 |
-
df["response"] = df_output["response"].tolist()
|
15 |
-
df["rationale"] = df_output["rationale"].tolist()
|
16 |
-
df["explanation"] = df_output["explanation"].tolist()
|
17 |
-
df["score"] = df_output["score"].tolist()
|
18 |
-
cols = [
|
19 |
-
"conversation",
|
20 |
-
"tools_langchain",
|
21 |
-
"n_turns",
|
22 |
-
"len_query",
|
23 |
-
"n_tools",
|
24 |
-
"response",
|
25 |
-
"rationale",
|
26 |
-
"explanation",
|
27 |
-
"score",
|
28 |
-
]
|
29 |
-
return df[cols]
|
30 |
-
|
31 |
-
|
32 |
-
def get_chat_and_score_df(model, dataset):
|
33 |
-
df_output = pd.read_parquet(f"output/{model}/{dataset}.parquet")
|
34 |
-
df = pd.read_parquet(f"datasets/{dataset}.parquet")
|
35 |
-
df = get_updated_df(df, df_output)
|
36 |
-
return df
|
37 |
-
|
38 |
-
|
39 |
-
def on_filter_change(
|
40 |
-
model,
|
41 |
-
dataset,
|
42 |
-
min_score,
|
43 |
-
max_score,
|
44 |
-
min_n_turns,
|
45 |
-
min_len_query,
|
46 |
-
min_n_tools,
|
47 |
-
):
|
48 |
-
try:
|
49 |
-
# Call filter_and_display with index 0 and unpack 4 values
|
50 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
51 |
-
model,
|
52 |
-
dataset,
|
53 |
-
min_score,
|
54 |
-
max_score,
|
55 |
-
min_n_turns,
|
56 |
-
min_len_query,
|
57 |
-
min_n_tools,
|
58 |
-
0,
|
59 |
-
)
|
60 |
-
# Return exactly 4 values
|
61 |
-
return chat_html, metrics_html, tool_html, index_html
|
62 |
-
except Exception as e:
|
63 |
-
error_html = f"""
|
64 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
65 |
-
<div style="font-weight: 600;">Filter Error</div>
|
66 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
67 |
-
{str(e)}
|
68 |
-
</div>
|
69 |
-
</div>
|
70 |
-
"""
|
71 |
-
return (
|
72 |
-
error_html,
|
73 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
74 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
75 |
-
"<div style='text-align: center;'>0/0</div>",
|
76 |
-
)
|
77 |
-
|
78 |
-
|
79 |
-
def navigate_prev(
|
80 |
-
current_idx,
|
81 |
-
model,
|
82 |
-
dataset,
|
83 |
-
min_score,
|
84 |
-
max_score,
|
85 |
-
min_n_turns,
|
86 |
-
min_len_query,
|
87 |
-
min_n_tools,
|
88 |
-
):
|
89 |
-
try:
|
90 |
-
# Handle current_idx as dictionary
|
91 |
-
if isinstance(current_idx, dict) and "value" in current_idx:
|
92 |
-
idx_val = int(current_idx["value"])
|
93 |
-
else:
|
94 |
-
idx_val = int(current_idx) if current_idx is not None else 0
|
95 |
-
|
96 |
-
new_index = max(0, idx_val - 1)
|
97 |
-
|
98 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
99 |
-
model,
|
100 |
-
dataset,
|
101 |
-
min_score,
|
102 |
-
max_score,
|
103 |
-
min_n_turns,
|
104 |
-
min_len_query,
|
105 |
-
min_n_tools,
|
106 |
-
new_index,
|
107 |
-
)
|
108 |
-
return chat_html, metrics_html, tool_html, index_html, new_index
|
109 |
-
except Exception as e:
|
110 |
-
error_html = f"""
|
111 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
112 |
-
<div style="font-weight: 600;">Navigation Error</div>
|
113 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
114 |
-
{str(e)}
|
115 |
-
</div>
|
116 |
-
</div>
|
117 |
-
"""
|
118 |
-
return (
|
119 |
-
error_html,
|
120 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
121 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
122 |
-
"<div style='text-align: center;'>0/0</div>",
|
123 |
-
current_idx or 0,
|
124 |
-
)
|
125 |
-
|
126 |
-
|
127 |
-
def navigate_next(
|
128 |
-
current_idx,
|
129 |
-
model,
|
130 |
-
dataset,
|
131 |
-
min_score,
|
132 |
-
max_score,
|
133 |
-
min_n_turns,
|
134 |
-
min_len_query,
|
135 |
-
min_n_tools,
|
136 |
-
):
|
137 |
-
try:
|
138 |
-
# Handle current_idx as dictionary
|
139 |
-
if isinstance(current_idx, dict) and "value" in current_idx:
|
140 |
-
idx_val = int(current_idx["value"])
|
141 |
-
else:
|
142 |
-
idx_val = int(current_idx) if current_idx is not None else 0
|
143 |
-
|
144 |
-
new_index = idx_val + 1
|
145 |
-
|
146 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
147 |
-
model,
|
148 |
-
dataset,
|
149 |
-
min_score,
|
150 |
-
max_score,
|
151 |
-
min_n_turns,
|
152 |
-
min_len_query,
|
153 |
-
min_n_tools,
|
154 |
-
new_index,
|
155 |
-
)
|
156 |
-
return chat_html, metrics_html, tool_html, index_html, new_index
|
157 |
-
except Exception as e:
|
158 |
-
error_html = f"""
|
159 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
160 |
-
<div style="font-weight: 600;">Navigation Error</div>
|
161 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
162 |
-
{str(e)}
|
163 |
-
</div>
|
164 |
-
</div>
|
165 |
-
"""
|
166 |
-
return (
|
167 |
-
error_html,
|
168 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
169 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
170 |
-
"<div style='text-align: center;'>0/0</div>",
|
171 |
-
current_idx or 0,
|
172 |
-
)
|
173 |
-
|
174 |
-
|
175 |
-
def filter_and_display(
|
176 |
-
model,
|
177 |
-
dataset,
|
178 |
-
min_score,
|
179 |
-
max_score,
|
180 |
-
min_n_turns,
|
181 |
-
min_len_query,
|
182 |
-
min_n_tools,
|
183 |
-
index=0,
|
184 |
-
):
|
185 |
-
"""Combined function to filter data and update display"""
|
186 |
-
try:
|
187 |
-
# Extract model
|
188 |
-
if isinstance(model, dict):
|
189 |
-
if "value" in model:
|
190 |
-
model_str = str(model["value"])
|
191 |
-
else:
|
192 |
-
model_str = MODELS[0]
|
193 |
-
else:
|
194 |
-
model_str = str(model) if model is not None else MODELS[0]
|
195 |
-
|
196 |
-
# Extract dataset
|
197 |
-
if isinstance(dataset, dict):
|
198 |
-
if "value" in dataset:
|
199 |
-
dataset_str = str(dataset["value"])
|
200 |
-
else:
|
201 |
-
dataset_str = DATASETS[0]
|
202 |
-
else:
|
203 |
-
dataset_str = str(dataset) if dataset is not None else DATASETS[0]
|
204 |
-
|
205 |
-
# Extract min_score
|
206 |
-
if isinstance(min_score, dict):
|
207 |
-
if "value" in min_score:
|
208 |
-
min_score_val = float(min_score["value"])
|
209 |
-
else:
|
210 |
-
min_score_val = float(min(SCORES))
|
211 |
-
else:
|
212 |
-
min_score_val = (
|
213 |
-
float(min_score) if min_score is not None else float(min(SCORES))
|
214 |
-
)
|
215 |
-
|
216 |
-
# Extract max_score
|
217 |
-
if isinstance(max_score, dict):
|
218 |
-
if "value" in max_score:
|
219 |
-
max_score_val = float(max_score["value"])
|
220 |
-
else:
|
221 |
-
max_score_val = float(max(SCORES))
|
222 |
-
else:
|
223 |
-
max_score_val = (
|
224 |
-
float(max_score) if max_score is not None else float(max(SCORES))
|
225 |
-
)
|
226 |
-
|
227 |
-
# Extract min_n_turns
|
228 |
-
if isinstance(min_n_turns, dict):
|
229 |
-
if "value" in min_n_turns:
|
230 |
-
min_n_turns_val = int(min_n_turns["value"])
|
231 |
-
else:
|
232 |
-
min_n_turns_val = 0
|
233 |
-
else:
|
234 |
-
min_n_turns_val = int(min_n_turns) if min_n_turns is not None else 0
|
235 |
-
|
236 |
-
# Extract min_len_query
|
237 |
-
if isinstance(min_len_query, dict):
|
238 |
-
if "value" in min_len_query:
|
239 |
-
min_len_query_val = int(min_len_query["value"])
|
240 |
-
else:
|
241 |
-
min_len_query_val = 0
|
242 |
-
else:
|
243 |
-
min_len_query_val = int(min_len_query) if min_len_query is not None else 0
|
244 |
-
|
245 |
-
# Extract min_n_tools
|
246 |
-
if isinstance(min_n_tools, dict):
|
247 |
-
if "value" in min_n_tools:
|
248 |
-
min_n_tools_val = int(min_n_tools["value"])
|
249 |
-
else:
|
250 |
-
min_n_tools_val = 0
|
251 |
-
else:
|
252 |
-
min_n_tools_val = int(min_n_tools) if min_n_tools is not None else 0
|
253 |
-
|
254 |
-
# Extract index
|
255 |
-
if isinstance(index, dict):
|
256 |
-
if "value" in index:
|
257 |
-
try:
|
258 |
-
index_val = int(index["value"])
|
259 |
-
except (ValueError, TypeError):
|
260 |
-
index_val = 0
|
261 |
-
else:
|
262 |
-
index_val = 0
|
263 |
-
else:
|
264 |
-
try:
|
265 |
-
index_val = int(index) if index is not None else 0
|
266 |
-
except (ValueError, TypeError):
|
267 |
-
index_val = 0
|
268 |
-
|
269 |
-
# Get the data
|
270 |
-
df_chat = get_chat_and_score_df(model_str, dataset_str)
|
271 |
-
|
272 |
-
# Ensure filter columns exist
|
273 |
-
for col, default in [
|
274 |
-
("score", 0.0),
|
275 |
-
("n_turns", 0),
|
276 |
-
("len_query", 0),
|
277 |
-
("n_tools", 0),
|
278 |
-
]:
|
279 |
-
if col not in df_chat.columns:
|
280 |
-
df_chat[col] = default
|
281 |
-
else:
|
282 |
-
df_chat[col] = pd.to_numeric(df_chat[col], errors="coerce").fillna(
|
283 |
-
default
|
284 |
-
)
|
285 |
-
|
286 |
-
# Apply all filters
|
287 |
-
df_filtered = df_chat[
|
288 |
-
(df_chat["score"] >= min_score_val)
|
289 |
-
& (df_chat["score"] <= max_score_val)
|
290 |
-
& (df_chat["n_turns"] >= min_n_turns_val)
|
291 |
-
& (df_chat["len_query"] >= min_len_query_val)
|
292 |
-
& (df_chat["n_tools"] >= min_n_tools_val)
|
293 |
-
].copy()
|
294 |
-
|
295 |
-
# Check if dataframe is empty
|
296 |
-
if len(df_filtered) == 0:
|
297 |
-
empty_message = """
|
298 |
-
<div style="
|
299 |
-
padding: 1.5rem;
|
300 |
-
text-align: center;
|
301 |
-
color: var(--text-muted);
|
302 |
-
background-color: var(--surface-color-alt);
|
303 |
-
border-radius: 8px;
|
304 |
-
border: 1px dashed var(--border-color);
|
305 |
-
margin: 1rem 0;">
|
306 |
-
<div style="font-size: 2rem; margin-bottom: 1rem;">📭</div>
|
307 |
-
<div style="font-weight: 500; margin-bottom: 0.5rem;">No Results Found</div>
|
308 |
-
<div style="font-style: italic; font-size: 0.9rem;">Try adjusting your filters to see more data</div>
|
309 |
-
</div>
|
310 |
-
"""
|
311 |
-
return (
|
312 |
-
empty_message,
|
313 |
-
empty_message,
|
314 |
-
empty_message,
|
315 |
-
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
|
316 |
-
)
|
317 |
-
|
318 |
-
# Ensure index is valid
|
319 |
-
max_index = len(df_filtered) - 1
|
320 |
-
valid_index = max(0, min(index_val, max_index))
|
321 |
-
|
322 |
-
# Get the row
|
323 |
-
row = df_filtered.iloc[valid_index]
|
324 |
-
|
325 |
-
# Format displays
|
326 |
-
chat_html = format_chat_display(row)
|
327 |
-
metrics_html = format_metrics_display(row)
|
328 |
-
|
329 |
-
# Get tools info with error handling
|
330 |
-
try:
|
331 |
-
tool_html = format_tool_info(row["tools_langchain"])
|
332 |
-
except Exception as e:
|
333 |
-
tool_html = f"""
|
334 |
-
<div style="padding: 1rem; background-color: var(--surface-color-alt); border-radius: 8px; color: var(--text-muted);">
|
335 |
-
<div style="font-weight: 500; margin-bottom: 0.5rem;">Tool Information Unavailable</div>
|
336 |
-
<div style="font-size: 0.9rem;">Error: {str(e)}</div>
|
337 |
-
</div>
|
338 |
-
"""
|
339 |
-
|
340 |
-
# Index display
|
341 |
-
index_html = f"""
|
342 |
-
<div style="
|
343 |
-
display: flex;
|
344 |
-
align-items: center;
|
345 |
-
justify-content: center;
|
346 |
-
font-weight: 500;
|
347 |
-
color: var(--primary-text);
|
348 |
-
background-color: var(--surface-color-alt);
|
349 |
-
padding: 0.5rem 1rem;
|
350 |
-
border-radius: 20px;
|
351 |
-
font-size: 0.9rem;
|
352 |
-
width: fit-content;
|
353 |
-
margin: 0 auto;">
|
354 |
-
<span style="margin-right: 0.5rem;">📄</span>{valid_index + 1}/{len(df_filtered)}
|
355 |
-
</div>
|
356 |
-
"""
|
357 |
-
|
358 |
-
return chat_html, metrics_html, tool_html, index_html
|
359 |
-
|
360 |
-
except Exception as e:
|
361 |
-
error_html = f"""
|
362 |
-
<div style="
|
363 |
-
padding: 1.5rem;
|
364 |
-
color: var(--score-low);
|
365 |
-
background-color: var(--surface-color);
|
366 |
-
border: 1px solid var(--score-low);
|
367 |
-
border-radius: 8px;
|
368 |
-
margin: 1rem 0;
|
369 |
-
display: flex;
|
370 |
-
align-items: flex-start;">
|
371 |
-
<div style="flex-shrink: 0; margin-right: 1rem; font-size: 1.5rem;">⚠️</div>
|
372 |
-
<div>
|
373 |
-
<div style="font-weight: 600; margin-bottom: 0.5rem;">Error Occurred</div>
|
374 |
-
<div style="
|
375 |
-
font-family: monospace;
|
376 |
-
background-color: var(--surface-color-alt);
|
377 |
-
padding: 1rem;
|
378 |
-
border-radius: 4px;
|
379 |
-
white-space: pre-wrap;
|
380 |
-
font-size: 0.9rem;">
|
381 |
-
{str(e)}
|
382 |
-
</div>
|
383 |
-
</div>
|
384 |
-
</div>
|
385 |
-
"""
|
386 |
-
return (
|
387 |
-
error_html,
|
388 |
-
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No metrics available</div>",
|
389 |
-
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No tool information available</div>",
|
390 |
-
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
|
391 |
-
)
|
392 |
-
|
393 |
-
|
394 |
-
def create_exploration_tab(df):
|
395 |
-
"""Create an enhanced data exploration tab with better UI and functionality."""
|
396 |
-
|
397 |
-
# Main UI setup
|
398 |
-
with gr.Tab("Data Exploration"):
|
399 |
-
# CSS styling (unchanged)
|
400 |
-
gr.HTML(
|
401 |
-
"""
|
402 |
-
<style>
|
403 |
-
/* Custom styling for the exploration tab */
|
404 |
-
:root[data-theme="light"] {
|
405 |
-
--surface-color: #f8f9fa;
|
406 |
-
--surface-color-alt: #ffffff;
|
407 |
-
--text-color: #202124;
|
408 |
-
--text-muted: #666666;
|
409 |
-
--primary-text: #1a73e8;
|
410 |
-
--primary-text-light: rgba(26, 115, 232, 0.3);
|
411 |
-
--border-color: #e9ecef;
|
412 |
-
--border-color-light: #f1f3f5;
|
413 |
-
--shadow-color: rgba(0,0,0,0.05);
|
414 |
-
--message-bg-user: #E5F6FD;
|
415 |
-
--message-bg-assistant: #F7F7F8;
|
416 |
-
--message-bg-system: #FFF3E0;
|
417 |
-
--response-bg: #F0F7FF;
|
418 |
-
--score-high: #1a73e8;
|
419 |
-
--score-med: #f4b400;
|
420 |
-
--score-low: #ea4335;
|
421 |
-
}
|
422 |
-
|
423 |
-
:root[data-theme="dark"] {
|
424 |
-
--surface-color: #1e1e1e;
|
425 |
-
--surface-color-alt: #2d2d2d;
|
426 |
-
--text-color: #ffffff;
|
427 |
-
--text-muted: #a0a0a0;
|
428 |
-
--primary-text: #60a5fa;
|
429 |
-
--primary-text-light: rgba(96, 165, 250, 0.3);
|
430 |
-
--border-color: #404040;
|
431 |
-
--border-color-light: #333333;
|
432 |
-
--shadow-color: rgba(0,0,0,0.2);
|
433 |
-
--message-bg-user: #2d3748;
|
434 |
-
--message-bg-assistant: #1a1a1a;
|
435 |
-
--message-bg-system: #2c2516;
|
436 |
-
--response-bg: #1e2a3a;
|
437 |
-
--score-high: #60a5fa;
|
438 |
-
--score-med: #fbbf24;
|
439 |
-
--score-low: #ef4444;
|
440 |
-
}
|
441 |
-
|
442 |
-
#exploration-header {
|
443 |
-
margin-bottom: 1.5rem;
|
444 |
-
padding-bottom: 1rem;
|
445 |
-
border-bottom: 1px solid var(--border-color);
|
446 |
-
}
|
447 |
-
|
448 |
-
.filter-container {
|
449 |
-
background-color: var(--surface-color);
|
450 |
-
border-radius: 10px;
|
451 |
-
padding: 1rem;
|
452 |
-
margin-bottom: 1.5rem;
|
453 |
-
border: 1px solid var(--border-color);
|
454 |
-
box-shadow: 0 2px 6px var(--shadow-color);
|
455 |
-
}
|
456 |
-
|
457 |
-
.navigation-buttons button {
|
458 |
-
min-width: 120px;
|
459 |
-
font-weight: 500;
|
460 |
-
}
|
461 |
-
|
462 |
-
.content-panel {
|
463 |
-
margin-top: 1.5rem;
|
464 |
-
}
|
465 |
-
|
466 |
-
@media (max-width: 768px) {
|
467 |
-
.filter-row {
|
468 |
-
flex-direction: column;
|
469 |
-
}
|
470 |
-
}
|
471 |
-
</style>
|
472 |
-
"""
|
473 |
-
)
|
474 |
-
|
475 |
-
# Header
|
476 |
-
with gr.Row(elem_id="exploration-header"):
|
477 |
-
gr.HTML(HEADER_CONTENT)
|
478 |
-
|
479 |
-
# Filters section
|
480 |
-
with gr.Column(elem_classes="filter-container"):
|
481 |
-
gr.Markdown("### 🔍 Filter Options")
|
482 |
-
|
483 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
484 |
-
explore_model = gr.Dropdown(
|
485 |
-
choices=MODELS,
|
486 |
-
value=MODELS[0],
|
487 |
-
label="Model",
|
488 |
-
container=True,
|
489 |
-
scale=1,
|
490 |
-
info="Select AI model",
|
491 |
-
)
|
492 |
-
explore_dataset = gr.Dropdown(
|
493 |
-
choices=DATASETS,
|
494 |
-
value=DATASETS[0],
|
495 |
-
label="Dataset",
|
496 |
-
container=True,
|
497 |
-
scale=1,
|
498 |
-
info="Select evaluation dataset",
|
499 |
-
)
|
500 |
-
|
501 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
502 |
-
min_score = gr.Slider(
|
503 |
-
minimum=float(min(SCORES)),
|
504 |
-
maximum=float(max(SCORES)),
|
505 |
-
value=float(min(SCORES)),
|
506 |
-
step=0.1,
|
507 |
-
label="Minimum TSQ Score",
|
508 |
-
container=True,
|
509 |
-
scale=1,
|
510 |
-
info="Filter responses with scores above this threshold",
|
511 |
-
)
|
512 |
-
max_score = gr.Slider(
|
513 |
-
minimum=float(min(SCORES)),
|
514 |
-
maximum=float(max(SCORES)),
|
515 |
-
value=float(max(SCORES)),
|
516 |
-
step=0.1,
|
517 |
-
label="Maximum TSQ Score",
|
518 |
-
container=True,
|
519 |
-
scale=1,
|
520 |
-
info="Filter responses with scores below this threshold",
|
521 |
-
)
|
522 |
-
|
523 |
-
# Get the data for initial ranges
|
524 |
-
df_chat = get_chat_and_score_df(explore_model.value, explore_dataset.value)
|
525 |
-
|
526 |
-
# Ensure columns exist and get ranges
|
527 |
-
n_turns_max = int(df_chat["n_turns"].max())
|
528 |
-
len_query_max = int(df_chat["len_query"].max())
|
529 |
-
n_tools_max = int(df_chat["n_tools"].max())
|
530 |
-
|
531 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
532 |
-
n_turns_filter = gr.Slider(
|
533 |
-
minimum=0,
|
534 |
-
maximum=n_turns_max,
|
535 |
-
value=0,
|
536 |
-
step=1,
|
537 |
-
label="Minimum Turn Count",
|
538 |
-
container=True,
|
539 |
-
scale=1,
|
540 |
-
info="Filter by minimum number of conversation turns",
|
541 |
-
)
|
542 |
-
|
543 |
-
len_query_filter = gr.Slider(
|
544 |
-
minimum=0,
|
545 |
-
maximum=len_query_max,
|
546 |
-
value=0,
|
547 |
-
step=10,
|
548 |
-
label="Minimum Query Length",
|
549 |
-
container=True,
|
550 |
-
scale=1,
|
551 |
-
info="Filter by minimum length of query in characters",
|
552 |
-
)
|
553 |
-
|
554 |
-
n_tools_filter = gr.Slider(
|
555 |
-
minimum=0,
|
556 |
-
maximum=n_tools_max,
|
557 |
-
value=0,
|
558 |
-
step=1,
|
559 |
-
label="Minimum Tool Count",
|
560 |
-
container=True,
|
561 |
-
scale=1,
|
562 |
-
info="Filter by minimum number of tools used",
|
563 |
-
)
|
564 |
-
|
565 |
-
with gr.Row():
|
566 |
-
reset_btn = gr.Button("Reset Filters", size="sm", variant="secondary")
|
567 |
-
|
568 |
-
# Navigation row
|
569 |
-
with gr.Row(variant="panel"):
|
570 |
-
with gr.Column(scale=1):
|
571 |
-
prev_btn = gr.Button(
|
572 |
-
"← Previous",
|
573 |
-
size="lg",
|
574 |
-
variant="secondary",
|
575 |
-
elem_classes="navigation-buttons",
|
576 |
-
)
|
577 |
-
|
578 |
-
with gr.Column(scale=1, min_width=100):
|
579 |
-
# Get initial count from default data
|
580 |
-
df_initial = get_chat_and_score_df(MODELS[0], DATASETS[0])
|
581 |
-
initial_count = len(df_initial)
|
582 |
-
|
583 |
-
index_display = gr.HTML(
|
584 |
-
value=f"""<div style="
|
585 |
-
display: flex;
|
586 |
-
align-items: center;
|
587 |
-
justify-content: center;
|
588 |
-
font-weight: 500;
|
589 |
-
color: var(--primary-text);
|
590 |
-
background-color: var(--surface-color-alt);
|
591 |
-
padding: 0.5rem 1rem;
|
592 |
-
border-radius: 20px;
|
593 |
-
font-size: 0.9rem;
|
594 |
-
width: fit-content;
|
595 |
-
margin: 0 auto;">
|
596 |
-
<span style="margin-right: 0.5rem;">📄</span>1/{initial_count}
|
597 |
-
</div>""",
|
598 |
-
elem_id="index-display",
|
599 |
-
)
|
600 |
-
|
601 |
-
with gr.Column(scale=1):
|
602 |
-
next_btn = gr.Button(
|
603 |
-
"Next →",
|
604 |
-
size="lg",
|
605 |
-
variant="secondary",
|
606 |
-
elem_classes="navigation-buttons",
|
607 |
-
)
|
608 |
-
|
609 |
-
# Content areas
|
610 |
-
with gr.Row(equal_height=True):
|
611 |
-
with gr.Column(scale=1):
|
612 |
-
chat_display = gr.HTML()
|
613 |
-
with gr.Column(scale=1):
|
614 |
-
metrics_display = gr.HTML()
|
615 |
-
|
616 |
-
with gr.Row():
|
617 |
-
tool_info_display = gr.HTML()
|
618 |
-
|
619 |
-
# State for tracking current index (simple integer state)
|
620 |
-
current_index = gr.State(value=0)
|
621 |
-
|
622 |
-
def reset_index():
|
623 |
-
"""Reset the current index to 0"""
|
624 |
-
return 0
|
625 |
-
|
626 |
-
# Add these explicit event handlers for model and dataset changes
|
627 |
-
explore_model.change(
|
628 |
-
reset_index,
|
629 |
-
inputs=[],
|
630 |
-
outputs=[current_index],
|
631 |
-
)
|
632 |
-
|
633 |
-
explore_dataset.change(
|
634 |
-
reset_index,
|
635 |
-
inputs=[],
|
636 |
-
outputs=[current_index],
|
637 |
-
)
|
638 |
-
|
639 |
-
min_score.change(
|
640 |
-
reset_index,
|
641 |
-
inputs=[],
|
642 |
-
outputs=[current_index],
|
643 |
-
)
|
644 |
-
|
645 |
-
max_score.change(
|
646 |
-
reset_index,
|
647 |
-
inputs=[],
|
648 |
-
outputs=[current_index],
|
649 |
-
)
|
650 |
-
|
651 |
-
n_turns_filter.change(
|
652 |
-
reset_index,
|
653 |
-
inputs=[],
|
654 |
-
outputs=[current_index],
|
655 |
-
)
|
656 |
-
|
657 |
-
len_query_filter.change(
|
658 |
-
reset_index,
|
659 |
-
inputs=[],
|
660 |
-
outputs=[current_index],
|
661 |
-
)
|
662 |
-
|
663 |
-
n_tools_filter.change(
|
664 |
-
reset_index,
|
665 |
-
inputs=[],
|
666 |
-
outputs=[current_index],
|
667 |
-
)
|
668 |
-
|
669 |
-
# Reset filters
|
670 |
-
def reset_filters():
|
671 |
-
return (
|
672 |
-
MODELS[0],
|
673 |
-
DATASETS[0],
|
674 |
-
float(min(SCORES)),
|
675 |
-
float(max(SCORES)),
|
676 |
-
0, # n_turns
|
677 |
-
0, # len_query
|
678 |
-
0, # n_tools
|
679 |
-
)
|
680 |
-
|
681 |
-
reset_btn.click(
|
682 |
-
reset_filters,
|
683 |
-
outputs=[
|
684 |
-
explore_model,
|
685 |
-
explore_dataset,
|
686 |
-
min_score,
|
687 |
-
max_score,
|
688 |
-
n_turns_filter,
|
689 |
-
len_query_filter,
|
690 |
-
n_tools_filter,
|
691 |
-
],
|
692 |
-
)
|
693 |
-
|
694 |
-
# Connect filter changes
|
695 |
-
# Replace the existing filter connections with this:
|
696 |
-
for control in [
|
697 |
-
explore_model,
|
698 |
-
explore_dataset,
|
699 |
-
min_score,
|
700 |
-
max_score,
|
701 |
-
n_turns_filter,
|
702 |
-
len_query_filter,
|
703 |
-
n_tools_filter,
|
704 |
-
]:
|
705 |
-
control.change(
|
706 |
-
on_filter_change,
|
707 |
-
inputs=[
|
708 |
-
explore_model,
|
709 |
-
explore_dataset,
|
710 |
-
min_score,
|
711 |
-
max_score,
|
712 |
-
n_turns_filter,
|
713 |
-
len_query_filter,
|
714 |
-
n_tools_filter,
|
715 |
-
],
|
716 |
-
outputs=[
|
717 |
-
chat_display,
|
718 |
-
metrics_display,
|
719 |
-
tool_info_display,
|
720 |
-
index_display,
|
721 |
-
],
|
722 |
-
)
|
723 |
-
|
724 |
-
# Connect navigation buttons with necessary filter parameters
|
725 |
-
prev_btn.click(
|
726 |
-
navigate_prev,
|
727 |
-
inputs=[
|
728 |
-
current_index,
|
729 |
-
explore_model,
|
730 |
-
explore_dataset,
|
731 |
-
min_score,
|
732 |
-
max_score,
|
733 |
-
n_turns_filter,
|
734 |
-
len_query_filter,
|
735 |
-
n_tools_filter,
|
736 |
-
],
|
737 |
-
outputs=[
|
738 |
-
chat_display,
|
739 |
-
metrics_display,
|
740 |
-
tool_info_display,
|
741 |
-
index_display,
|
742 |
-
current_index,
|
743 |
-
],
|
744 |
-
)
|
745 |
-
|
746 |
-
next_btn.click(
|
747 |
-
navigate_next,
|
748 |
-
inputs=[
|
749 |
-
current_index,
|
750 |
-
explore_model,
|
751 |
-
explore_dataset,
|
752 |
-
min_score,
|
753 |
-
max_score,
|
754 |
-
n_turns_filter,
|
755 |
-
len_query_filter,
|
756 |
-
n_tools_filter,
|
757 |
-
],
|
758 |
-
outputs=[
|
759 |
-
chat_display,
|
760 |
-
metrics_display,
|
761 |
-
tool_info_display,
|
762 |
-
index_display,
|
763 |
-
current_index,
|
764 |
-
],
|
765 |
-
)
|
766 |
-
|
767 |
-
def update_slider_ranges(model, dataset):
|
768 |
-
df_chat = get_chat_and_score_df(model, dataset)
|
769 |
-
|
770 |
-
# Make sure columns are numeric first
|
771 |
-
df_chat["n_turns"] = pd.to_numeric(
|
772 |
-
df_chat["n_turns"], errors="coerce"
|
773 |
-
).fillna(0)
|
774 |
-
df_chat["len_query"] = pd.to_numeric(
|
775 |
-
df_chat["len_query"], errors="coerce"
|
776 |
-
).fillna(0)
|
777 |
-
df_chat["n_tools"] = pd.to_numeric(
|
778 |
-
df_chat["n_tools"], errors="coerce"
|
779 |
-
).fillna(0)
|
780 |
-
|
781 |
-
# Calculate maximums with safety buffers
|
782 |
-
n_turns_max = max(1, int(df_chat["n_turns"].max()))
|
783 |
-
len_query_max = max(10, int(df_chat["len_query"].max()))
|
784 |
-
n_tools_max = max(1, int(df_chat["n_tools"].max()))
|
785 |
-
|
786 |
-
# Return updated sliders using gr.update()
|
787 |
-
return (
|
788 |
-
gr.update(maximum=n_turns_max, value=0),
|
789 |
-
gr.update(maximum=len_query_max, value=0),
|
790 |
-
gr.update(maximum=n_tools_max, value=0),
|
791 |
-
)
|
792 |
-
|
793 |
-
# Connect model and dataset changes to slider range updates
|
794 |
-
explore_model.change(
|
795 |
-
update_slider_ranges,
|
796 |
-
inputs=[explore_model, explore_dataset],
|
797 |
-
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
798 |
-
)
|
799 |
-
explore_dataset.change(
|
800 |
-
update_slider_ranges,
|
801 |
-
inputs=[explore_model, explore_dataset],
|
802 |
-
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
803 |
-
)
|
804 |
-
|
805 |
-
return [
|
806 |
-
chat_display,
|
807 |
-
metrics_display,
|
808 |
-
tool_info_display,
|
809 |
-
index_display,
|
810 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/leaderboard.py
CHANGED
@@ -156,7 +156,7 @@ def filter_leaderboard(df, model_type, category, sort_by):
|
|
156 |
|
157 |
|
158 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
159 |
-
with gr.Tab("Leaderboard"):
|
160 |
gr.HTML(HEADER_CONTENT + CARDS)
|
161 |
gr.HTML(DESCRIPTION_HTML)
|
162 |
|
|
|
156 |
|
157 |
|
158 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
159 |
+
with gr.Tab("Leaderboard v1"):
|
160 |
gr.HTML(HEADER_CONTENT + CARDS)
|
161 |
gr.HTML(DESCRIPTION_HTML)
|
162 |
|