Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 27,906 Bytes
4a46abc f226f06 4a46abc 5c8703b f226f06 5c8703b 4a46abc f226f06 4a46abc f226f06 4a46abc f226f06 4a46abc f226f06 4a46abc f226f06 4a46abc f226f06 4a46abc f226f06 5c8703b f226f06 4a46abc f226f06 5c8703b f226f06 5c8703b 4a46abc f226f06 5c8703b 4a46abc f226f06 5c8703b f226f06 4a46abc f226f06 4a46abc 5c8703b f226f06 5c8703b 4a46abc f226f06 4a46abc f226f06 5c8703b f226f06 5c8703b 4a46abc 5c8703b f226f06 4a46abc f226f06 5c8703b f226f06 4a46abc 5c8703b f226f06 4a46abc f226f06 4a46abc f226f06 4a46abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
import gradio as gr
import pandas as pd
import numpy as np
from data_loader import MODELS, DATASETS, SCORES, HEADER_CONTENT
from chat import (
format_chat_display,
format_metrics_display,
format_tool_info,
)
def get_updated_df(df, df_output):
df = df.iloc[: len(df_output)].copy()
df["response"] = df_output["response"].tolist()
df["rationale"] = df_output["rationale"].tolist()
df["explanation"] = df_output["explanation"].tolist()
df["score"] = df_output["score"].tolist()
cols = [
"conversation",
"tools_langchain",
"n_turns",
"len_query",
"n_tools",
"response",
"rationale",
"explanation",
"score",
]
return df[cols]
def get_chat_and_score_df(model, dataset):
df_output = pd.read_parquet(f"output/{model}/{dataset}.parquet")
df = pd.read_parquet(f"datasets/{dataset}.parquet")
df = get_updated_df(df, df_output)
return df
def on_filter_change(
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
):
try:
# Call filter_and_display with index 0 and unpack 4 values
chat_html, metrics_html, tool_html, index_html = filter_and_display(
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
0,
)
# Return exactly 4 values
return chat_html, metrics_html, tool_html, index_html
except Exception as e:
error_html = f"""
<div style="padding: 1.5rem; color: var(--score-low);">
<div style="font-weight: 600;">Filter Error</div>
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
{str(e)}
</div>
</div>
"""
return (
error_html,
"<div style='text-align: center;'>No metrics available</div>",
"<div style='text-align: center;'>No tool information available</div>",
"<div style='text-align: center;'>0/0</div>",
)
def navigate_prev(
current_idx,
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
):
try:
# Handle current_idx as dictionary
if isinstance(current_idx, dict) and "value" in current_idx:
idx_val = int(current_idx["value"])
else:
idx_val = int(current_idx) if current_idx is not None else 0
new_index = max(0, idx_val - 1)
chat_html, metrics_html, tool_html, index_html = filter_and_display(
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
new_index,
)
return chat_html, metrics_html, tool_html, index_html, new_index
except Exception as e:
error_html = f"""
<div style="padding: 1.5rem; color: var(--score-low);">
<div style="font-weight: 600;">Navigation Error</div>
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
{str(e)}
</div>
</div>
"""
return (
error_html,
"<div style='text-align: center;'>No metrics available</div>",
"<div style='text-align: center;'>No tool information available</div>",
"<div style='text-align: center;'>0/0</div>",
current_idx or 0,
)
def navigate_next(
current_idx,
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
):
try:
# Handle current_idx as dictionary
if isinstance(current_idx, dict) and "value" in current_idx:
idx_val = int(current_idx["value"])
else:
idx_val = int(current_idx) if current_idx is not None else 0
new_index = idx_val + 1
chat_html, metrics_html, tool_html, index_html = filter_and_display(
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
new_index,
)
return chat_html, metrics_html, tool_html, index_html, new_index
except Exception as e:
error_html = f"""
<div style="padding: 1.5rem; color: var(--score-low);">
<div style="font-weight: 600;">Navigation Error</div>
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
{str(e)}
</div>
</div>
"""
return (
error_html,
"<div style='text-align: center;'>No metrics available</div>",
"<div style='text-align: center;'>No tool information available</div>",
"<div style='text-align: center;'>0/0</div>",
current_idx or 0,
)
def filter_and_display(
model,
dataset,
min_score,
max_score,
min_n_turns,
min_len_query,
min_n_tools,
index=0,
):
"""Combined function to filter data and update display"""
try:
# Extract model
if isinstance(model, dict):
if "value" in model:
model_str = str(model["value"])
else:
model_str = MODELS[0]
else:
model_str = str(model) if model is not None else MODELS[0]
# Extract dataset
if isinstance(dataset, dict):
if "value" in dataset:
dataset_str = str(dataset["value"])
else:
dataset_str = DATASETS[0]
else:
dataset_str = str(dataset) if dataset is not None else DATASETS[0]
# Extract min_score
if isinstance(min_score, dict):
if "value" in min_score:
min_score_val = float(min_score["value"])
else:
min_score_val = float(min(SCORES))
else:
min_score_val = (
float(min_score) if min_score is not None else float(min(SCORES))
)
# Extract max_score
if isinstance(max_score, dict):
if "value" in max_score:
max_score_val = float(max_score["value"])
else:
max_score_val = float(max(SCORES))
else:
max_score_val = (
float(max_score) if max_score is not None else float(max(SCORES))
)
# Extract min_n_turns
if isinstance(min_n_turns, dict):
if "value" in min_n_turns:
min_n_turns_val = int(min_n_turns["value"])
else:
min_n_turns_val = 0
else:
min_n_turns_val = int(min_n_turns) if min_n_turns is not None else 0
# Extract min_len_query
if isinstance(min_len_query, dict):
if "value" in min_len_query:
min_len_query_val = int(min_len_query["value"])
else:
min_len_query_val = 0
else:
min_len_query_val = int(min_len_query) if min_len_query is not None else 0
# Extract min_n_tools
if isinstance(min_n_tools, dict):
if "value" in min_n_tools:
min_n_tools_val = int(min_n_tools["value"])
else:
min_n_tools_val = 0
else:
min_n_tools_val = int(min_n_tools) if min_n_tools is not None else 0
# Extract index
if isinstance(index, dict):
if "value" in index:
try:
index_val = int(index["value"])
except (ValueError, TypeError):
index_val = 0
else:
index_val = 0
else:
try:
index_val = int(index) if index is not None else 0
except (ValueError, TypeError):
index_val = 0
# Get the data
df_chat = get_chat_and_score_df(model_str, dataset_str)
# Ensure filter columns exist
for col, default in [
("score", 0.0),
("n_turns", 0),
("len_query", 0),
("n_tools", 0),
]:
if col not in df_chat.columns:
df_chat[col] = default
else:
df_chat[col] = pd.to_numeric(df_chat[col], errors="coerce").fillna(
default
)
# Apply all filters
df_filtered = df_chat[
(df_chat["score"] >= min_score_val)
& (df_chat["score"] <= max_score_val)
& (df_chat["n_turns"] >= min_n_turns_val)
& (df_chat["len_query"] >= min_len_query_val)
& (df_chat["n_tools"] >= min_n_tools_val)
].copy()
# Check if dataframe is empty
if len(df_filtered) == 0:
empty_message = """
<div style="
padding: 1.5rem;
text-align: center;
color: var(--text-muted);
background-color: var(--surface-color-alt);
border-radius: 8px;
border: 1px dashed var(--border-color);
margin: 1rem 0;">
<div style="font-size: 2rem; margin-bottom: 1rem;">π</div>
<div style="font-weight: 500; margin-bottom: 0.5rem;">No Results Found</div>
<div style="font-style: italic; font-size: 0.9rem;">Try adjusting your filters to see more data</div>
</div>
"""
return (
empty_message,
empty_message,
empty_message,
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
)
# Ensure index is valid
max_index = len(df_filtered) - 1
valid_index = max(0, min(index_val, max_index))
# Get the row
row = df_filtered.iloc[valid_index]
# Format displays
chat_html = format_chat_display(row)
metrics_html = format_metrics_display(row)
# Get tools info with error handling
try:
tool_html = format_tool_info(row["tools_langchain"])
except Exception as e:
tool_html = f"""
<div style="padding: 1rem; background-color: var(--surface-color-alt); border-radius: 8px; color: var(--text-muted);">
<div style="font-weight: 500; margin-bottom: 0.5rem;">Tool Information Unavailable</div>
<div style="font-size: 0.9rem;">Error: {str(e)}</div>
</div>
"""
# Index display
index_html = f"""
<div style="
display: flex;
align-items: center;
justify-content: center;
font-weight: 500;
color: var(--primary-text);
background-color: var(--surface-color-alt);
padding: 0.5rem 1rem;
border-radius: 20px;
font-size: 0.9rem;
width: fit-content;
margin: 0 auto;">
<span style="margin-right: 0.5rem;">π</span>{valid_index + 1}/{len(df_filtered)}
</div>
"""
return chat_html, metrics_html, tool_html, index_html
except Exception as e:
error_html = f"""
<div style="
padding: 1.5rem;
color: var(--score-low);
background-color: var(--surface-color);
border: 1px solid var(--score-low);
border-radius: 8px;
margin: 1rem 0;
display: flex;
align-items: flex-start;">
<div style="flex-shrink: 0; margin-right: 1rem; font-size: 1.5rem;">β οΈ</div>
<div>
<div style="font-weight: 600; margin-bottom: 0.5rem;">Error Occurred</div>
<div style="
font-family: monospace;
background-color: var(--surface-color-alt);
padding: 1rem;
border-radius: 4px;
white-space: pre-wrap;
font-size: 0.9rem;">
{str(e)}
</div>
</div>
</div>
"""
return (
error_html,
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No metrics available</div>",
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No tool information available</div>",
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
)
def create_exploration_tab(df):
"""Create an enhanced data exploration tab with better UI and functionality."""
# Main UI setup
with gr.Tab("Data Exploration"):
# CSS styling (unchanged)
gr.HTML(
"""
<style>
/* Custom styling for the exploration tab */
:root[data-theme="light"] {
--surface-color: #f8f9fa;
--surface-color-alt: #ffffff;
--text-color: #202124;
--text-muted: #666666;
--primary-text: #1a73e8;
--primary-text-light: rgba(26, 115, 232, 0.3);
--border-color: #e9ecef;
--border-color-light: #f1f3f5;
--shadow-color: rgba(0,0,0,0.05);
--message-bg-user: #E5F6FD;
--message-bg-assistant: #F7F7F8;
--message-bg-system: #FFF3E0;
--response-bg: #F0F7FF;
--score-high: #1a73e8;
--score-med: #f4b400;
--score-low: #ea4335;
}
:root[data-theme="dark"] {
--surface-color: #1e1e1e;
--surface-color-alt: #2d2d2d;
--text-color: #ffffff;
--text-muted: #a0a0a0;
--primary-text: #60a5fa;
--primary-text-light: rgba(96, 165, 250, 0.3);
--border-color: #404040;
--border-color-light: #333333;
--shadow-color: rgba(0,0,0,0.2);
--message-bg-user: #2d3748;
--message-bg-assistant: #1a1a1a;
--message-bg-system: #2c2516;
--response-bg: #1e2a3a;
--score-high: #60a5fa;
--score-med: #fbbf24;
--score-low: #ef4444;
}
#exploration-header {
margin-bottom: 1.5rem;
padding-bottom: 1rem;
border-bottom: 1px solid var(--border-color);
}
.filter-container {
background-color: var(--surface-color);
border-radius: 10px;
padding: 1rem;
margin-bottom: 1.5rem;
border: 1px solid var(--border-color);
box-shadow: 0 2px 6px var(--shadow-color);
}
.navigation-buttons button {
min-width: 120px;
font-weight: 500;
}
.content-panel {
margin-top: 1.5rem;
}
@media (max-width: 768px) {
.filter-row {
flex-direction: column;
}
}
</style>
"""
)
# Header
with gr.Row(elem_id="exploration-header"):
gr.HTML(HEADER_CONTENT)
# Filters section
with gr.Column(elem_classes="filter-container"):
gr.Markdown("### π Filter Options")
with gr.Row(equal_height=True, elem_classes="filter-row"):
explore_model = gr.Dropdown(
choices=MODELS,
value=MODELS[0],
label="Model",
container=True,
scale=1,
info="Select AI model",
)
explore_dataset = gr.Dropdown(
choices=DATASETS,
value=DATASETS[0],
label="Dataset",
container=True,
scale=1,
info="Select evaluation dataset",
)
with gr.Row(equal_height=True, elem_classes="filter-row"):
min_score = gr.Slider(
minimum=float(min(SCORES)),
maximum=float(max(SCORES)),
value=float(min(SCORES)),
step=0.1,
label="Minimum TSQ Score",
container=True,
scale=1,
info="Filter responses with scores above this threshold",
)
max_score = gr.Slider(
minimum=float(min(SCORES)),
maximum=float(max(SCORES)),
value=float(max(SCORES)),
step=0.1,
label="Maximum TSQ Score",
container=True,
scale=1,
info="Filter responses with scores below this threshold",
)
# Get the data for initial ranges
df_chat = get_chat_and_score_df(explore_model.value, explore_dataset.value)
# Ensure columns exist and get ranges
n_turns_max = int(df_chat["n_turns"].max())
len_query_max = int(df_chat["len_query"].max())
n_tools_max = int(df_chat["n_tools"].max())
with gr.Row(equal_height=True, elem_classes="filter-row"):
n_turns_filter = gr.Slider(
minimum=0,
maximum=n_turns_max,
value=0,
step=1,
label="Minimum Turn Count",
container=True,
scale=1,
info="Filter by minimum number of conversation turns",
)
len_query_filter = gr.Slider(
minimum=0,
maximum=len_query_max,
value=0,
step=10,
label="Minimum Query Length",
container=True,
scale=1,
info="Filter by minimum length of query in characters",
)
n_tools_filter = gr.Slider(
minimum=0,
maximum=n_tools_max,
value=0,
step=1,
label="Minimum Tool Count",
container=True,
scale=1,
info="Filter by minimum number of tools used",
)
with gr.Row():
reset_btn = gr.Button("Reset Filters", size="sm", variant="secondary")
# Navigation row
with gr.Row(variant="panel"):
with gr.Column(scale=1):
prev_btn = gr.Button(
"β Previous",
size="lg",
variant="secondary",
elem_classes="navigation-buttons",
)
with gr.Column(scale=1, min_width=100):
index_display = gr.HTML(
value="<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
elem_id="index-display",
)
with gr.Column(scale=1):
next_btn = gr.Button(
"Next β",
size="lg",
variant="secondary",
elem_classes="navigation-buttons",
)
# Content areas
with gr.Row(equal_height=True):
with gr.Column(scale=1):
chat_display = gr.HTML()
with gr.Column(scale=1):
metrics_display = gr.HTML()
with gr.Row():
tool_info_display = gr.HTML()
# State for tracking current index (simple integer state)
current_index = gr.State(value=0)
# Reset filters
def reset_filters():
return (
MODELS[0],
DATASETS[0],
float(min(SCORES)),
float(max(SCORES)),
0, # n_turns
0, # len_query
0, # n_tools
)
reset_btn.click(
reset_filters,
outputs=[
explore_model,
explore_dataset,
min_score,
max_score,
n_turns_filter,
len_query_filter,
n_tools_filter,
],
)
# Connect filter changes
# Replace the existing filter connections with this:
for control in [
explore_model,
explore_dataset,
min_score,
max_score,
n_turns_filter,
len_query_filter,
n_tools_filter,
]:
control.change(
on_filter_change,
inputs=[
explore_model,
explore_dataset,
min_score,
max_score,
n_turns_filter,
len_query_filter,
n_tools_filter,
],
outputs=[
chat_display,
metrics_display,
tool_info_display,
index_display,
],
)
# Connect navigation buttons with necessary filter parameters
prev_btn.click(
navigate_prev,
inputs=[
current_index,
explore_model,
explore_dataset,
min_score,
max_score,
n_turns_filter,
len_query_filter,
n_tools_filter,
],
outputs=[
chat_display,
metrics_display,
tool_info_display,
index_display,
current_index,
],
)
next_btn.click(
navigate_next,
inputs=[
current_index,
explore_model,
explore_dataset,
min_score,
max_score,
n_turns_filter,
len_query_filter,
n_tools_filter,
],
outputs=[
chat_display,
metrics_display,
tool_info_display,
index_display,
current_index,
],
)
def update_slider_ranges(model, dataset):
df_chat = get_chat_and_score_df(model, dataset)
# Make sure columns are numeric first
df_chat["n_turns"] = pd.to_numeric(
df_chat["n_turns"], errors="coerce"
).fillna(0)
df_chat["len_query"] = pd.to_numeric(
df_chat["len_query"], errors="coerce"
).fillna(0)
df_chat["n_tools"] = pd.to_numeric(
df_chat["n_tools"], errors="coerce"
).fillna(0)
# Calculate maximums with safety buffers
n_turns_max = max(1, int(df_chat["n_turns"].max()))
len_query_max = max(10, int(df_chat["len_query"].max()))
n_tools_max = max(1, int(df_chat["n_tools"].max()))
# Return updated sliders using gr.update()
return (
gr.update(maximum=n_turns_max, value=0),
gr.update(maximum=len_query_max, value=0),
gr.update(maximum=n_tools_max, value=0),
)
# Connect model and dataset changes to slider range updates
explore_model.change(
update_slider_ranges,
inputs=[explore_model, explore_dataset],
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
)
explore_dataset.change(
update_slider_ranges,
inputs=[explore_model, explore_dataset],
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
)
return [
chat_display,
metrics_display,
tool_info_display,
index_display,
]
def filter_and_update_display(model, dataset, min_score, max_score, current_index):
"""Filter the dataset and update the display with comprehensive error handling."""
try:
df_chat = get_chat_and_score_df(model, dataset)
df_chat = df_chat[
(df_chat["score"] >= min_score) & (df_chat["score"] <= max_score)
]
if df_chat.empty:
return (
'<div style="padding: 1.5rem; color: var(--text-muted); text-align: center; font-style: italic; background-color: var(--surface-color-alt); border-radius: 8px; border: 1px dashed var(--border-color);">No data available for selected filters</div>',
'<div style="padding: 1.5rem; color: var(--text-muted); text-align: center; font-style: italic;">No metrics available</div>',
'<div style="padding: 1.5rem; color: var(--text-muted); text-align: center; font-style: italic;">No tool information available</div>',
'<div style="font-weight: 500; color: var(--text-muted);">0/0</div>',
)
max_index = len(df_chat) - 1
current_index = min(current_index, max_index)
chat_html, metrics_html, tool_html = update_chat_display(df_chat, current_index)
index_display = f"""
<div style="
display: flex;
align-items: center;
justify-content: center;
font-weight: 500;
color: var(--primary-text);
background-color: var(--surface-color-alt);
padding: 0.5rem 1rem;
border-radius: 20px;
font-size: 0.9rem;
width: fit-content;
margin: 0 auto;">
<span style="margin-right: 0.25rem;">π</span>{current_index + 1}/{len(df_chat)}
</div>
"""
return chat_html, metrics_html, tool_html, index_display
except Exception as e:
error_html = f"""
<div style="
padding: 1.5rem;
color: var(--score-low);
background-color: var(--surface-color);
border: 1px solid var(--score-low);
border-radius: 8px;
display: flex;
align-items: flex-start;">
<div style="
flex-shrink: 0;
margin-right: 1rem;
font-size: 1.5rem;">β οΈ</div>
<div>
<div style="
font-weight: 600;
margin-bottom: 0.5rem;">Error Occurred</div>
<div style="
font-family: monospace;
background-color: var(--surface-color-alt);
padding: 1rem;
border-radius: 4px;
white-space: pre-wrap;
font-size: 0.9rem;">
{str(e)}
</div>
</div>
</div>
"""
return (
error_html,
'<div style="padding: 1.5rem; color: var(--text-muted); text-align: center; font-style: italic;">No metrics available</div>',
'<div style="padding: 1.5rem; color: var(--text-muted); text-align: center; font-style: italic;">No tool information available</div>',
'<div style="font-weight: 500; color: var(--text-muted);">0/0</div>',
)
|