Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import json | |
| import datetime | |
| from email.utils import parseaddr | |
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| from datasets import load_dataset | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import HfApi | |
| # InfoStrings | |
| from scorer import question_scorer | |
| from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink | |
| TOKEN = os.environ.get("TOKEN", None) | |
| OWNER="gaia-benchmark" | |
| DATA_DATASET = f"{OWNER}/GAIA" | |
| INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal" | |
| SUBMISSION_DATASET = f"{OWNER}/submissions_internal" | |
| RESULTS_DATASET = f"{OWNER}/results_public" | |
| LEADERBOARD_PATH = f"{OWNER}/leaderboard" | |
| api = HfApi() | |
| YEAR_VERSION = "2023" | |
| os.makedirs("scored", exist_ok=True) | |
| # Display the results | |
| eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", ignore_verifications=True) | |
| def get_dataframe_from_results(eval_results, split): | |
| local_df = eval_results[split] | |
| local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])}) | |
| local_df = local_df.remove_columns(["mail", "system_prompt", "url"]) | |
| local_df = local_df.rename_column("model", "Model name") | |
| local_df = local_df.rename_column("model_family", "Model family") | |
| local_df = local_df.rename_column("score", "Average score (%)") | |
| for i in [1, 2, 3]: | |
| local_df = local_df.rename_column(f"score_level{i}", f"Level {i} score (%)") | |
| df = pd.DataFrame(local_df) | |
| df = df.sort_values(by=["Average score (%)"], ascending=False) | |
| numeric_cols = [c for c in local_df.column_names if "score" in c] | |
| df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2) | |
| #df = df.style.format("{:.2%}", subset=numeric_cols) | |
| return df | |
| eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation") | |
| eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test") | |
| # Gold answers | |
| gold_results = {} | |
| gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", token=TOKEN) | |
| gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]} | |
| def restart_space(): | |
| api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN) | |
| TYPES = ["markdown", "number", "number", "number", "number", "str", "str"] | |
| def add_new_eval( | |
| val_or_test: str, | |
| model: str, | |
| model_family: str, | |
| system_prompt: str, | |
| url: str, | |
| path_to_file: str, | |
| organisation: str, | |
| mail: str, | |
| ): | |
| # Very basic email parsing | |
| _, parsed_mail = parseaddr(mail) | |
| if not "@" in parsed_mail: | |
| return format_warning("Please provide a valid email adress.") | |
| print("Adding new eval") | |
| # Check if the combination model/org already exists and prints a warning message if yes | |
| if model.lower() in set(eval_results[val_or_test]["model"]) and organisation.lower() in set(eval_results[val_or_test]["organisation"]): | |
| return format_warning("This model has been already submitted.") | |
| if path_to_file is None: | |
| return format_warning("Please attach a file.") | |
| # Save submitted file | |
| api.upload_file( | |
| repo_id=SUBMISSION_DATASET, | |
| path_or_fileobj=path_to_file.name, | |
| path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl", | |
| repo_type="dataset", | |
| token=TOKEN | |
| ) | |
| # Compute score | |
| file_path = path_to_file.name | |
| scores = {"all": 0, 1: 0, 2: 0, 3: 0} | |
| num_questions = {"all": 0, 1: 0, 2: 0, 3: 0} | |
| with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file: | |
| with open(file_path, 'r') as f: | |
| for ix, line in enumerate(f): | |
| try: | |
| task = json.loads(line) | |
| except Exception: | |
| return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.") | |
| if "model_answer" not in task: | |
| raise format_error(f"Line {ix} contains no model_answer key. Please fix it and resubmit your file.") | |
| answer = task["model_answer"] | |
| task_id = task["task_id"] | |
| try: | |
| level = int(gold_results[val_or_test][task_id]["Level"]) | |
| except KeyError: | |
| return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?") | |
| score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"]) | |
| scored_file.write( | |
| json.dumps({ | |
| "id": task_id, | |
| "model_answer": answer, | |
| "score": score, | |
| "level": level | |
| }) + "\n" | |
| ) | |
| scores["all"] += score | |
| scores[level] += score | |
| num_questions["all"] += 1 | |
| num_questions[level] += 1 | |
| # Save scored file | |
| api.upload_file( | |
| repo_id=SUBMISSION_DATASET, | |
| path_or_fileobj=f"scored/{organisation}_{model}.jsonl", | |
| path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl", | |
| repo_type="dataset", | |
| token=TOKEN | |
| ) | |
| # Actual submission | |
| eval_entry = { | |
| "model": model, | |
| "model_family": model_family, | |
| "system_prompt": system_prompt, | |
| "url": url, | |
| "organisation": organisation, | |
| "mail": mail, | |
| "score": scores["all"]/num_questions["all"], | |
| "score_level1": scores[1]/num_questions[1], | |
| "score_level2": scores[2]/num_questions[2], | |
| "score_level3": scores[3]/num_questions[3], | |
| } | |
| eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry) | |
| print(eval_results) | |
| eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN) | |
| return format_log(f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed") | |
| def refresh(): | |
| eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", ignore_verifications=True) | |
| eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation") | |
| eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test") | |
| return eval_dataframe_val, eval_dataframe_test | |
| def upload_file(files): | |
| file_paths = [file.name for file in files] | |
| return file_paths | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| ) #.style(show_copy_button=True) | |
| with gr.Tab("Results: Validation"): | |
| leaderboard_table_val = gr.components.Dataframe( | |
| value=eval_dataframe_val, datatype=TYPES, interactive=False, | |
| column_widths=["20%"] | |
| ) | |
| with gr.Tab("Results: Test"): | |
| leaderboard_table_test = gr.components.Dataframe( | |
| value=eval_dataframe_test, datatype=TYPES, interactive=False, | |
| column_widths=["20%"] | |
| ) | |
| refresh_button = gr.Button("Refresh") | |
| refresh_button.click( | |
| refresh, | |
| inputs=[], | |
| outputs=[ | |
| leaderboard_table_val, | |
| leaderboard_table_test, | |
| ], | |
| ) | |
| with gr.Accordion("Submit a new model for evaluation"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split") | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| model_family_textbox = gr.Textbox(label="Model family") | |
| system_prompt_textbox = gr.Textbox(label="System prompt example") | |
| url_textbox = gr.Textbox(label="Url to model information") | |
| with gr.Column(): | |
| organisation = gr.Textbox(label="Organisation") | |
| mail = gr.Textbox(label="Contact email") | |
| file_output = gr.File() | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| level_of_test, | |
| model_name_textbox, | |
| model_family_textbox, | |
| system_prompt_textbox, | |
| url_textbox, | |
| file_output, | |
| organisation, | |
| ], | |
| submission_result, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=3600) | |
| scheduler.start() | |
| demo.launch(debug=True) | |