Spaces:
Runtime error
Runtime error
| """ | |
| utils.py | |
| Functions: | |
| - get_script: Get the dialogue from the LLM. | |
| - call_llm: Call the LLM with the given prompt and dialogue format. | |
| - get_audio: Get the audio from the TTS model from HF Spaces. | |
| """ | |
| import os | |
| import requests | |
| import tempfile | |
| import soundfile as sf | |
| import spaces | |
| import torch | |
| from gradio_client import Client | |
| from openai import OpenAI | |
| from parler_tts import ParlerTTSForConditionalGeneration | |
| from pydantic import ValidationError | |
| from transformers import AutoTokenizer | |
| MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct" | |
| JINA_URL = "https://r.jina.ai/" | |
| client = OpenAI( | |
| base_url="https://api.fireworks.ai/inference/v1", | |
| api_key=os.getenv("FIREWORKS_API_KEY"), | |
| ) | |
| hf_client = Client("mrfakename/MeloTTS") | |
| # Initialize the model and tokenizer (do this outside the function for efficiency) | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device) | |
| tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1") | |
| def generate_script(system_prompt: str, input_text: str, output_model): | |
| """Get the dialogue from the LLM.""" | |
| # Load as python object | |
| try: | |
| response = call_llm(system_prompt, input_text, output_model) | |
| dialogue = output_model.model_validate_json( | |
| response.choices[0].message.content | |
| ) | |
| except ValidationError as e: | |
| error_message = f"Failed to parse dialogue JSON: {e}" | |
| system_prompt_with_error = f"{system_prompt}\n\nPlease return a VALID JSON object. This was the earlier error: {error_message}" | |
| response = call_llm(system_prompt_with_error, input_text, output_model) | |
| dialogue = output_model.model_validate_json( | |
| response.choices[0].message.content | |
| ) | |
| return dialogue | |
| def call_llm(system_prompt: str, text: str, dialogue_format): | |
| """Call the LLM with the given prompt and dialogue format.""" | |
| response = client.chat.completions.create( | |
| messages=[ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": text}, | |
| ], | |
| model=MODEL_ID, | |
| max_tokens=16_384, | |
| temperature=0.1, | |
| response_format={ | |
| "type": "json_object", | |
| "schema": dialogue_format.model_json_schema(), | |
| }, | |
| ) | |
| return response | |
| def parse_url(url: str) -> str: | |
| """Parse the given URL and return the text content.""" | |
| full_url = f"{JINA_URL}{url}" | |
| response = requests.get(full_url, timeout=60) | |
| return response.text | |
| def generate_audio(text: str, speaker: str, language: str, voice: str) -> str: | |
| """Generate audio using the local Parler TTS model or HuggingFace client.""" | |
| if language == "EN": | |
| # Adjust the description based on speaker and language | |
| if speaker == "Guest": | |
| description = f"{voice} has a slightly expressive and animated speech, speaking at a moderate speed with natural pitch variations. The voice is clear and close-up, as if recorded in a professional studio." | |
| else: # host | |
| description = f"{voice} has a professional and engaging tone, speaking at a moderate to slightly faster pace. The voice is clear, warm, and sounds like a seasoned podcast host." | |
| # Prepare inputs | |
| input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) | |
| prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device) | |
| # Generate audio | |
| generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) | |
| audio_arr = generation.cpu().numpy().squeeze() | |
| # Save to temporary file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: | |
| sf.write(temp_file.name, audio_arr, model.config.sampling_rate, format='mp3') | |
| return temp_file.name | |
| else: | |
| accent = language | |
| if speaker == "Guest": | |
| speed = 0.9 | |
| else: # host | |
| speed = 1.1 | |
| # Generate audio | |
| result = hf_client.predict( | |
| text=text, language=language, speaker=accent, speed=speed, api_name="/synthesize" | |
| ) | |
| return result | |