Spaces:
Runtime error
Runtime error
Initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import VisionEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
CHECKPOINT = "g8a9/vit-geppetto-captioning"
|
| 9 |
+
model = VisionEncoderDecoderModel.from_pretrained(CHECKPOINT)
|
| 10 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(CHECKPOINT)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)
|
| 12 |
+
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def generate_caption(url):
|
| 17 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
| 18 |
+
inputs = feature_extractor(image, return_tensors="pt")
|
| 19 |
+
generated_ids = model.generate(
|
| 20 |
+
inputs["pixel_values"],
|
| 21 |
+
max_length=20,
|
| 22 |
+
num_beams=5,
|
| 23 |
+
early_stopping=True,
|
| 24 |
+
no_repeat_ngram_size=2,
|
| 25 |
+
num_return_sequences=3,
|
| 26 |
+
)
|
| 27 |
+
captions = tokenizer.batch_decode(
|
| 28 |
+
generated_ids,
|
| 29 |
+
skip_special_tokens=True,
|
| 30 |
+
)
|
| 31 |
+
return captions[0]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
st.title("Captioning demo")
|
| 35 |
+
|
| 36 |
+
url = st.text_input(
|
| 37 |
+
"Insert your URL", "https://iheartcats.com/wp-content/uploads/2015/08/c84.jpg"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
st.image(url)
|
| 41 |
+
|
| 42 |
+
if st.button("Run captioning"):
|
| 43 |
+
with st.spinner("Processing image..."):
|
| 44 |
+
caption = generate_caption(url)
|
| 45 |
+
st.text(caption)
|