Spaces:
Runtime error
Runtime error
File size: 1,909 Bytes
48f8356 f5d37e2 73aeabd 40058f2 6321fb3 40058f2 48f8356 73aeabd ef6eea4 48f8356 ef6eea4 a60ea1d ef6eea4 48f8356 f5d37e2 48f8356 73aeabd 14a7588 ef6eea4 48f8356 a446815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
import gradio as gr
from langchain.llms import HuggingFaceHub
llama_repo = os.getenv('HF_MODEL_LLAMA_REPO')
starchat_repo = os.getenv('HF_MODEL_STARCHAT_REPO')
llamma_template = """[INST]<<SYS>>I want you to act as document language translator. You do translation {source} texts in document into then you return to me the translated document AND DO NOTHING ELSE.<</SYS>>
Begin of the document:
{query}
End of the document[/INST]
{target} translated document:
"""
starchat_template = """<|system|>I want you to act as document language translator. You do translation {source} texts in document into then you return to me the translated document AND DO NOTHING ELSE.<</SYS>>
Begin of the document:
{query}
End of the document<|end|>
<|assistant|>
{target} translated document:
"""
model_kwargs={
"max_new_tokens":2048,
"temperature": 0.01,
"truncate": 4096,
"seed" : 256,
"stop" : ["</s>","<|endoftext|>","<|end|>"],
}
llm1 = HuggingFaceHub(repo_id=llama_repo, task="text-generation", model_kwargs=model_kwargs)
llm2 = HuggingFaceHub(repo_id=starchat_repo, task="text-generation", model_kwargs=model_kwargs)
def translation(source, target, text):
response = text
try:
input_prompt = llamma_template.replace("{source}", source)
input_prompt = input_prompt.replace("{target}", target)
input_prompt = input_prompt.replace("{query}", text)
response=llm1(input_prompt)
except Exception as e:
print(f"ERROR: LLM show {e}")
input_prompt = starchat_template.replace("{source}", source)
input_prompt = input_prompt.replace("{target}", target)
input_prompt = input_prompt.replace("{query}", text)
response=llm2(input_prompt).replace("<|end|>","")
return response
gr.Interface(translation, inputs=["text","text","text"], outputs="text").launch() |