Spaces:
Runtime error
Runtime error
File size: 6,687 Bytes
733ad93 929fc3c 733ad93 f141999 733ad93 185c780 733ad93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass
import torch
import sentencepiece as spm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login
logger = logging.getLogger()
logger.setLevel("INFO")
gr_interface = None
VERSION = "1.0"
@dataclass
class DefaultArgs:
hf_model_name_or_path: str = "cyberagent/open-calm-1b"
spm_model_path: str = None
env: str = "dev"
port: int = 7860
make_public: bool = False
args = DefaultArgs()
def load_model(
model_dir,
):
model = AutoModelForCausalLM.from_pretrained(args.hf_model_name_or_path, device_map="auto", torch_dtype=torch.float32)
if torch.cuda.is_available():
model = model.to("cuda:0")
return model
logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_name_or_path)
logging.info("Finished loading model")
class Streamer(BaseStreamer):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.num_invoked = 0
self.prompt = ""
self.generated_text = ""
self.ended = False
def put(self, t: torch.Tensor):
d = t.dim()
if d == 1:
pass
elif d == 2:
t = t[0]
else:
raise NotImplementedError
t = [int(x) for x in t.numpy()]
text = self.tokenizer.decode(t, skip_special_tokens=True)
if self.num_invoked == 0:
self.prompt = text
self.num_invoked += 1
return
self.generated_text += text
logging.debug(f"[streamer]: {self.generated_text}")
def end(self):
self.ended = True
def generate(
prompt,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
logging.debug(log)
print(log)
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(model.device)
max_possilbe_new_tokens = model.config.max_position_embeddings - len(input_ids.squeeze(0))
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
streamer = Streamer(tokenizer=tokenizer)
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
streamer=streamer,
# max_length=4096,
# top_k=100,
# top_p=0.9,
# num_return_sequences=2,
# num_beams=2,
))
thr.start()
gen_tokens = model.generate(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
)
gen = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
while not streamer.ended:
time.sleep(0.05)
yield streamer.generated_text
# TODO: optimize for final few tokens
gen = streamer.generated_text
log.update(dict(
generation=gen,
version=VERSION,
time=str(arrow.now("+09:00"))))
logging.info(log)
yield gen
def process_feedback(
rating,
prompt,
generation,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
log.update(dict(
time=str(arrow.now("+09:00")),
version=VERSION,
))
logging.info(log)
if gr_interface:
gr_interface.close(verbose=False)
with gr.Blocks() as gr_interface:
with gr.Row():
gr.Markdown(f"# {args.hf_model_name_or_path.split('/')[-1]} playground")
with gr.Row():
# left panel
with gr.Column(scale=1):
# generation params
with gr.Box():
gr.Markdown("hyper parameters")
# hidden default params
do_sample = gr.Checkbox(True, label="Do Sample", visible=True)
no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
# visible params
max_new_tokens = gr.Slider(
128,
min(512, model.config.max_position_embeddings),
value=128,
step=128,
label="max tokens",
)
temperature = gr.Slider(
0, 1, value=0.7, step=0.05, label="temperature",
)
repetition_penalty = gr.Slider(
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
)
# grouping params for easier reference
gr_params = [
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
]
# right panel
with gr.Column(scale=2):
# user input block
with gr.Box():
textbox_prompt = gr.Textbox(
label="入力",
placeholder="AIによって私達の暮らしは、",
interactive=True,
lines=5,
value="AIによって私達の暮らしは、"
)
with gr.Box():
with gr.Row():
btn_stop = gr.Button(value="キャンセル", variant="secondary")
btn_submit = gr.Button(value="実行", variant="primary")
# model output block
with gr.Box():
textbox_generation = gr.Textbox(
label="応答",
lines=5,
value=""
)
# event handling
inputs = [textbox_prompt] + gr_params
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
btn_stop.click(None, None, None, cancels=click_event, queue=False)
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)
|