File size: 6,687 Bytes
733ad93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929fc3c
733ad93
 
 
 
 
 
 
 
 
f141999
733ad93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185c780
733ad93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr

import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass

import torch
import sentencepiece as spm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login


logger = logging.getLogger()
logger.setLevel("INFO")

gr_interface = None

VERSION = "1.0"

@dataclass
class DefaultArgs:
    hf_model_name_or_path: str = "cyberagent/open-calm-1b"
    spm_model_path: str = None
    env: str = "dev"
    port: int = 7860
    make_public: bool = False

args = DefaultArgs()


def load_model(
    model_dir,
):
    model = AutoModelForCausalLM.from_pretrained(args.hf_model_name_or_path, device_map="auto", torch_dtype=torch.float32)
    if torch.cuda.is_available():
        model = model.to("cuda:0")
    return model

logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_name_or_path)
logging.info("Finished loading model")

class Streamer(BaseStreamer):
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.num_invoked = 0
        self.prompt = ""
        self.generated_text = ""
        self.ended = False

    
    def put(self, t: torch.Tensor):
        d = t.dim()
        if d == 1:
            pass
        elif d == 2:
            t = t[0]
        else:
            raise NotImplementedError
        
        t = [int(x) for x in t.numpy()]
        
        text = self.tokenizer.decode(t, skip_special_tokens=True)
        
        if self.num_invoked == 0:
            self.prompt = text
            self.num_invoked += 1
            return
        
        self.generated_text += text
        logging.debug(f"[streamer]: {self.generated_text}")
    
    def end(self):
        self.ended = True

def generate(
    prompt,
    max_new_tokens,
    temperature,
    repetition_penalty,

    do_sample,
    no_repeat_ngram_size,
):
    log = dict(locals())
    logging.debug(log)
    print(log)
    
    input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(model.device)
    max_possilbe_new_tokens = model.config.max_position_embeddings - len(input_ids.squeeze(0))
    max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)

    streamer = Streamer(tokenizer=tokenizer)
    thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
        input_ids=input_ids,
        do_sample=do_sample,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_new_tokens=max_possilbe_new_tokens,
        streamer=streamer,
        # max_length=4096,
        # top_k=100,
        # top_p=0.9,
        # num_return_sequences=2,
        # num_beams=2,
    ))
    thr.start()
    gen_tokens = model.generate(
        input_ids=input_ids,
        do_sample=do_sample,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_new_tokens=max_possilbe_new_tokens,
    )
    gen = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)

    while not streamer.ended:
        time.sleep(0.05)
        yield streamer.generated_text
    
    # TODO: optimize for final few tokens
    gen = streamer.generated_text
    log.update(dict(
        generation=gen, 
        version=VERSION,
        time=str(arrow.now("+09:00"))))
    logging.info(log)
    yield gen

def process_feedback(
    rating,
    prompt,
    generation,
    
    max_new_tokens,
    temperature,
    repetition_penalty,
    do_sample,
    no_repeat_ngram_size,
):
    log = dict(locals())
    log.update(dict(
        time=str(arrow.now("+09:00")),
        version=VERSION,
    ))
    logging.info(log)

if gr_interface:
    gr_interface.close(verbose=False)

with gr.Blocks() as gr_interface:
    with gr.Row():
        gr.Markdown(f"# {args.hf_model_name_or_path.split('/')[-1]} playground")
    with gr.Row():
        
        # left panel
        with gr.Column(scale=1):
            
            # generation params
            with gr.Box():
                gr.Markdown("hyper parameters")
                
                # hidden default params
                do_sample = gr.Checkbox(True, label="Do Sample", visible=True)
                no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
                
                # visible params
                max_new_tokens = gr.Slider(
                    128, 
                    min(512, model.config.max_position_embeddings), 
                    value=128, 
                    step=128, 
                    label="max tokens",
                )
                temperature = gr.Slider(
                    0, 1, value=0.7, step=0.05, label="temperature", 
                )
                repetition_penalty = gr.Slider(
                    1, 1.5, value=1.2, step=0.05, label="frequency penalty",
                )
                
                # grouping params for easier reference
                gr_params = [
                    max_new_tokens,
                    temperature,
                    repetition_penalty,
                    
                    do_sample,
                    no_repeat_ngram_size,
                ]
                
        # right panel
        with gr.Column(scale=2):
            # user input block
            with gr.Box():
                textbox_prompt = gr.Textbox(
                    label="入力",
                    placeholder="AIによって私達の暮らしは、",
                    interactive=True,
                    lines=5,
                    value="AIによって私達の暮らしは、"
                )
            with gr.Box():
                with gr.Row():
                    btn_stop = gr.Button(value="キャンセル", variant="secondary")
                    btn_submit = gr.Button(value="実行", variant="primary")
                    

            # model output block
            with gr.Box():
                textbox_generation = gr.Textbox(
                    label="応答",
                    lines=5,
                    value=""
                )
            
    # event handling 
    inputs = [textbox_prompt] + gr_params
    click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
    btn_stop.click(None, None, None, cancels=click_event, queue=False)
    
    
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)