File size: 8,661 Bytes
b9a6dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from multiprocessing import Pool
from typing import List

import numpy as np
import torch
from pyscripts.utils.dialog_eval.vert import (
    get_auto_bleu2_geometric,
    get_self_bleu2_geometric,
    run_f,
)
from scipy.stats import gmean
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer


def perplexity(LLM_Output: str, model_id: str = "gpt2") -> str:
    """
    Compute the perplexity of the given text using a specified model from the
    `evaluate` library (default: GPT-2).

    Args:
        LLM_Output str:
            The text (string) for which perplexity is to be computed.
        model_id (str, optional):
            The identifier of the model to use for computing
            perplexity. Defaults to "gpt2".

    Returns:
        str:
            A formatted string showing the perplexity of the
            provided text(s), for example:
            "Perplexity: 45.23\n"

    Raises:
        ImportError:
            If the `evaluate` library is not installed or cannot be imported.

    Example:
        >>> text = "Hello world, this is a test."
        >>> result = perplexity(text, model_id="gpt2")
        >>> print(result)
        "Perplexity: 27.34\n"
    """
    try:
        import evaluate
    except Exception as e:
        print("Error: evaluate is not properly installed.")
        raise e
    perplexity = evaluate.load("perplexity", module_type="metric")
    results = perplexity.compute(model_id=model_id, predictions=[LLM_Output])
    return f"Perplexity: {results['mean_perplexity']:.2f}\n"


def vert(LLM_response_arr: List[str]) -> str:
    """
    Calculate and return Self BLEU-2, Auto BLEU-2 and VERT-2
    metrics for a list of LLM responses.

    Args:
        LLM_response_arr (List[str]):
            A list of responses (strings) generated by the language
            model acting as text dialog response generator.

    Returns:
        str:
            A formatted string that includes each computed metric and the final
            VERT value, for example:

            "Self-BLEU2-geometric: 42.13
             Auto-BLEU2-geometric: 38.94
             VERT: 40.5
             "

    Example:
        >>> # Suppose we have the following LLM responses:
        >>> responses = ["Hello world", "Foo bar", "Lorem ipsum dolor sit amet"]
        >>> result = vert(responses)
        >>> print(result)
        "Self-BLEU2-geometric: 42.13
         Auto-BLEU2-geometric: 38.94
         VERT: 40.5
         "
    """
    terms = [x.strip().split() for x in LLM_response_arr]

    tasks = [
        ("Self-BLEU2-geometric", get_self_bleu2_geometric),
        ("Auto-BLEU2-geometric", get_auto_bleu2_geometric),
    ]
    n_processes = min(16, len(tasks))
    with Pool(n_processes) as pool:
        metrics = pool.map(run_f, [(t[1], terms) for t in tasks])
    metric_arr = []
    str1 = ""
    for (metric_name, _), metric in zip(tasks, metrics):
        metric, sem = np.mean(metric), np.std(metric) / np.sqrt(len(metric))

        metric, sem = [round(100 * x, 2) for x in [metric, sem]]
        metric_arr.append(metric)

        str1 += f"{metric_name}: {metric}\n"
    str1 += f"VERT: {round(gmean(metric_arr), 2)}\n"
    return str1


def bert_score(
    total_response_arr: List[str], bert_model_name: str = "bert-base-uncased"
) -> str:
    """
    Compute a cosine similarity score between the concatenated
    context (all but the last element)
    and the final response (last element) using a BERT-based model.
    This serves as a simplified
    measure of how closely the response aligns with the preceding context semantically.

    Args:
        total_response_arr (List[str]):
            A list of strings. The last element represents the response,
            while all other elements
            are treated as the context.
        bert_model_name (str, optional):
            The name or path of the BERT model to use (from the Hugging Face Model Hub).
            Defaults to "bert-base-uncased".

    Returns:
        str:
            A string containing the cosine similarity
            (as a percentage) followed by a newline.
            For example:
                "Cosine Similarity: 85.67\n"

    Example:
        >>> total_responses = [
        ...     "User: Hi, how are you?",
        ...     "Assistant: I'm good! How can I help you today?",
        ...     "User: Can you tell me a joke?",
        ...     "Assistant: Sure! Here's one: Why did the chicken join a band?"
        ... ]
        >>> result = bert_score(total_responses, bert_model_name="bert-base-uncased")
        >>> print(result)
        "Cosine Similarity: 75.89\n"
    """

    def cosine_similarity_context_response(context, response, model, tokenizer):
        # Tokenize and encode both context and response
        context_inputs = tokenizer(context, return_tensors="pt", truncation=True)
        response_inputs = tokenizer(response, return_tensors="pt", truncation=True)
        for k in context_inputs:
            context_inputs[k] = context_inputs[k].cuda()
        for k in response_inputs:
            response_inputs[k] = response_inputs[k].cuda()

        # Get embeddings from the model
        with torch.no_grad():
            context_embedding = model(**context_inputs).last_hidden_state.mean(dim=1)
            response_embedding = model(**response_inputs).last_hidden_state.mean(dim=1)

        # Compute cosine similarity
        similarity = cosine_similarity(
            context_embedding.cpu().numpy(), response_embedding.cpu().numpy()
        )
        return similarity[0][0]

    bert_model = AutoModel.from_pretrained(bert_model_name).cuda()
    bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
    similarity = cosine_similarity_context_response(
        " ".join(total_response_arr[:-1]),
        total_response_arr[-1],
        bert_model,
        bert_tokenizer,
    )
    return f"Cosine Similarity: {similarity*100:.2f}" + "\n"


def DialoGPT_perplexity(
    user_utterance: str,
    response: str,
    dialog_model_name: str = "microsoft/DialoGPT-medium",
) -> str:
    """
    Compute the perplexity of a response given a user utterance using a pre-trained
    DialoGPT model. The function loads DialoGPT (medium by default)
    from the Hugging Face Model Hub, then calculates the perplexity
    for the
    (context + response) sequence.

    Args:
        user_utterance (str):
            The user utterance preceding the model's response.
        response (str):
            The generated response whose perplexity needs to be evaluated.

    Returns:
        str:
            A formatted string containing the DialoGPT perplexity score. For example:
            "DialoGPT Perplexity: 25.67\n"

    Example:
        >>> user_text = "Hi, how are you today?"
        >>> system_response = "I'm good, thank you! How can I help you?"
        >>> result = DialoGPT_perplexity(user_text, system_response)
        >>> print(result)
        "DialoGPT Perplexity: 31.45\n"
    """

    def evaluate_response_with_dialoGPT(context, response, model, tokenizer):
        """
        Evaluate the appropriateness of a response based on the
        given context using DialoGPT.

        Args:
            context (str): The dialogue context (previous conversation).
            response (str): The generated response to evaluate.
            model: Pre-trained DialoGPT model.
            tokenizer: Corresponding tokenizer for the DialoGPT model.

        Returns:
            float: Perplexity score of the response given the context.
        """
        model.eval()

        # Combine context and response as input
        input_text = context + tokenizer.eos_token + response + tokenizer.eos_token
        inputs = tokenizer(input_text, return_tensors="pt", truncation=True)
        inputs["input_ids"] = inputs["input_ids"].cuda()
        inputs["attention_mask"] = inputs["attention_mask"].cuda()
        # import pdb;pdb.set_trace()

        # Compute model outputs and loss
        with torch.no_grad():
            outputs = model(**inputs, labels=inputs["input_ids"].cuda())
            loss = outputs.loss

        # Calculate perplexity
        perplexity = torch.exp(loss)
        return perplexity.cpu().item()

    # Load DialoGPT model and tokenizer
    model_name = dialog_model_name
    model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    perplexity = evaluate_response_with_dialoGPT(
        user_utterance, response, model, tokenizer
    )
    return f"DialoGPT Perplexity: {perplexity:.2f}" + "\n"