MatthiasPicard's picture
Update tasks/text.py
8ae1d44 verified
raw
history blame
4.78 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from peft import PeftModel
from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding, BitsAndBytesConfig
from datasets import Dataset
import torch
import numpy as np
router = APIRouter()
DESCRIPTION = "qwen_finetuned"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
path_adapter = 'MatthiasPicard/QwenTest3'
path_model = "Qwen/Qwen2.5-3B-Instruct"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
base_model = AutoModelForSequenceClassification.from_pretrained(
path_model,
num_labels=len(LABEL_MAPPING),
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
model = PeftModel.from_pretrained(base_model, path_adapter)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(path_model)
tokenizer.pad_token = tokenizer.eos_token # Or any other token depending on your model
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.use_cache = False
model.config.pretraining_tp = 1
def preprocess_function(df):
return tokenizer(df["quote"], truncation=True)
tokenized_test = test_dataset.map(preprocess_function, batched=True)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
# data_collator=data_collator,
)
# per_device_eval_batch_size=8
preds = trainer.predict(tokenized_test)
# Run inference
# predictions = predict(tokenized_test)
# print(predictions)
predictions = np.array([np.argmax(x) for x in preds[0]])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results