File size: 4,780 Bytes
4d6e8c2
 
 
 
 
f19a99a
4d6e8c2
 
f19a99a
 
 
 
 
c6e64ec
4d6e8c2
f19a99a
4d6e8c2
 
f19a99a
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19a99a
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
8ae1d44
f19a99a
70f5f26
f19a99a
 
 
 
 
 
 
 
 
 
 
70f5f26
f19a99a
 
 
5c40b9f
 
 
 
 
 
b1183e7
 
 
2ae952d
184c6e1
f19a99a
b1183e7
 
2ae952d
184c6e1
b1183e7
2ae952d
18b0638
b1183e7
f19a99a
 
 
 
 
 
b1183e7
f19a99a
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from peft import PeftModel
from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding, BitsAndBytesConfig
from datasets import Dataset
import torch
import numpy as np


router = APIRouter()

DESCRIPTION = "qwen_finetuned"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
    path_adapter = 'MatthiasPicard/QwenTest3'
    path_model = "Qwen/Qwen2.5-3B-Instruct"

    bnb_config = BitsAndBytesConfig(
    load_in_8bit=True
    )
    
    base_model = AutoModelForSequenceClassification.from_pretrained(
    path_model,
    num_labels=len(LABEL_MAPPING),
    device_map="auto",
    torch_dtype=torch.bfloat16,
    quantization_config=bnb_config
    )    

    model = PeftModel.from_pretrained(base_model, path_adapter)
    model.eval()
    tokenizer = AutoTokenizer.from_pretrained(path_model)
    tokenizer.pad_token = tokenizer.eos_token  # Or any other token depending on your model
    tokenizer.pad_token_id = tokenizer.eos_token_id

    model.config.pad_token_id = tokenizer.pad_token_id
    model.config.use_cache = False
    model.config.pretraining_tp = 1
    def preprocess_function(df):
        return tokenizer(df["quote"], truncation=True)
    tokenized_test = test_dataset.map(preprocess_function, batched=True)
    
    # data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
     
    trainer = Trainer(
        model=model,
        tokenizer=tokenizer,
        # data_collator=data_collator,
    )

    # per_device_eval_batch_size=8
    preds = trainer.predict(tokenized_test)
    
    
    
    # Run inference
    # predictions = predict(tokenized_test)
    # print(predictions)
    predictions = np.array([np.argmax(x) for x in preds[0]])

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results