File size: 4,780 Bytes
4d6e8c2 f19a99a 4d6e8c2 f19a99a c6e64ec 4d6e8c2 f19a99a 4d6e8c2 f19a99a 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 f19a99a 4d6e8c2 70f5f26 4d6e8c2 8ae1d44 f19a99a 70f5f26 f19a99a 70f5f26 f19a99a 5c40b9f b1183e7 2ae952d 184c6e1 f19a99a b1183e7 2ae952d 184c6e1 b1183e7 2ae952d 18b0638 b1183e7 f19a99a b1183e7 f19a99a 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from peft import PeftModel
from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding, BitsAndBytesConfig
from datasets import Dataset
import torch
import numpy as np
router = APIRouter()
DESCRIPTION = "qwen_finetuned"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
path_adapter = 'MatthiasPicard/QwenTest3'
path_model = "Qwen/Qwen2.5-3B-Instruct"
bnb_config = BitsAndBytesConfig(
load_in_8bit=True
)
base_model = AutoModelForSequenceClassification.from_pretrained(
path_model,
num_labels=len(LABEL_MAPPING),
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
model = PeftModel.from_pretrained(base_model, path_adapter)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(path_model)
tokenizer.pad_token = tokenizer.eos_token # Or any other token depending on your model
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.use_cache = False
model.config.pretraining_tp = 1
def preprocess_function(df):
return tokenizer(df["quote"], truncation=True)
tokenized_test = test_dataset.map(preprocess_function, batched=True)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
# data_collator=data_collator,
)
# per_device_eval_batch_size=8
preds = trainer.predict(tokenized_test)
# Run inference
# predictions = predict(tokenized_test)
# print(predictions)
predictions = np.array([np.argmax(x) for x in preds[0]])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |