""" This script implements a deep learning pipeline for audio classification using a pre-trained MobileNetV2 model. The pipeline includes data loading, model training, evaluation, and emissions tracking. """ import os import torch import torch.nn as nn import torchaudio from torch.utils.data import Dataset, DataLoader import numpy as np from transformers import AutoModelForImageClassification from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from tqdm import tqdm import logging from datasets import load_dataset from accelerate import Accelerator from codecarbon import EmissionsTracker import time class Config: """ Configuration class to store hyperparameters and model settings. """ SAMPLE_RATE = 16000 N_FFT = 800 N_MELS = 128 HOP_LENGTH = None SIZE = (96, 96) SCALING_DIM = (1, 2) LEARNING_RATE = 0.0005 BATCH_SIZE = 32 NUM_WORKERS = 4 NUM_EPOCHS = 1 MODEL_NAME = "google/mobilenet_v2_0.35_96" MODEL_PATH = "scaled_model_800_128_96x96_mobilenet_small_unscaled_submission.pth" config = Config() class AudioDataset(Dataset): """ Custom Dataset class for loading and processing audio data. Args: data (list): List of audio data samples. sample_rate (int, optional): Target sample rate for audio resampling. Defaults to 16000. audio_target_length (float, optional): Target length of audio in seconds. Defaults to 4.5. """ def __init__(self, data, sample_rate=16000, audio_target_length=4.5): self.data = data self.sample_rate = sample_rate self.audio_target_length = audio_target_length def __len__(self): return len(self.data) def __getitem__(self, index): # 1. Cache the resampler if not hasattr(self, '_resampler_cache'): self._resampler_cache = {} # 2. Get data efficiently data_item = self.data[index] waveform = torch.FloatTensor(data_item["audio"]["array"]) if len(data_item["audio"]["array"]) > 0 else torch.ones(36000)*1E-5 # 4. Cached resampler creation orig_freq = waveform.shape[-1] target_freq = self.audio_target_length * self.sample_rate resampler_key = (orig_freq, target_freq) if resampler_key not in self._resampler_cache: self._resampler_cache[resampler_key] = torchaudio.transforms.Resample( orig_freq=orig_freq, new_freq=target_freq ) # 5. Apply resampling and return return self._resampler_cache[resampler_key](waveform), data_item["label"] def collate_fn(batch): """ Collate function to stack inputs and labels into batches. Args: batch (list): List of tuples containing inputs and labels. Returns: tuple: Stacked inputs and labels. """ return torch.stack([inputs for inputs, _ in batch]), torch.tensor([label for _, label in batch]) class AudioClassifier(nn.Module): """ Audio classification model using a pre-trained MobileNetV2. Args: model_name (str): Name of the pre-trained model. model_path (str): Path to save/load the model. new (bool, optional): Whether to load a new model or an existing one. Defaults to True. """ def __init__(self, model_name, model_path, new=True): super().__init__() self.model = self.load_model(model_name, model_path, new) self.num_classes = 2 self.mel_spectrogram = torchaudio.transforms.MelSpectrogram( sample_rate=config.SAMPLE_RATE, n_fft=config.N_FFT, n_mels=config.N_MELS, hop_length=config.HOP_LENGTH ) self.amplitude_to_db = torchaudio.transforms.AmplitudeToDB() def load_model(self, model_name, model_path, new=False): """ Load the pre-trained model and modify the classifier. Args: model_name (str): Name of the pre-trained model. model_path (str): Path to save/load the model. new (bool, optional): Whether to load a new model or an existing one. Defaults to False. Returns: nn.Module: Loaded model. """ model = AutoModelForImageClassification.from_pretrained(model_name) model.classifier = torch.nn.Sequential( nn.Linear(in_features=1280, out_features=2)) for param in model.parameters(): param.requires_grad = True state_dict = torch.load(model_path) model.load_state_dict(state_dict) return model def forward(self, waveforms): """ Forward pass through the model. Args: waveforms (torch.Tensor): Input audio waveforms. Returns: torch.Tensor: Model output. """ melspectrogram = self.mel_spectrogram(waveforms) melspectrogram = nn.functional.interpolate(melspectrogram.unsqueeze(1), size=config.SIZE, mode="bilinear", align_corners=False).squeeze(1) db_melspectrogram = self.amplitude_to_db(melspectrogram) delta = torchaudio.functional.compute_deltas(melspectrogram) x = torch.stack([melspectrogram, db_melspectrogram, delta], dim=1) return self.model(x) class Evaluator: def __init__(self, model, dataloader, device): self.model = model self.dataloader = dataloader self.device = device @torch.no_grad() def evaluate(self): self.model.eval() all_predictions = [] all_labels = [] idx = 0 for waveforms, labels in self.dataloader: waveforms = waveforms.to(self.device) outputs = self.model(waveforms).logits predictions = torch.argmax(outputs, dim=1) all_predictions.extend(predictions.cpu().numpy()) all_labels.extend(labels.cpu().numpy()) idx += 1 if idx % 10 == 0: torch.cuda.empty_cache() all_predictions = np.array(all_predictions) all_labels = np.array(all_labels) # return self.compute_metrics(all_predictions, all_labels) return all_predictions