|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
from accelerate import Accelerator |
|
from tqdm import tqdm |
|
from torch.amp import autocast |
|
import random |
|
import os |
|
import torch |
|
|
|
from .utils.evaluation import AudioEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
from audio_utils import AudioClassifier, AudioDataset, Config, collate_fn, Evaluator |
|
from transformers import AutoModelForImageClassification |
|
from torch.utils.data import DataLoader |
|
|
|
from loguru import logger |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Audio pipeline to classify sounds." |
|
ROUTE = "/audio" |
|
device = "cuda" |
|
|
|
|
|
@router.post(ROUTE, tags=["Audio Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_audio(request: AudioEvaluationRequest): |
|
""" |
|
Evaluate audio classification for rainforest sound detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-1) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"chainsaw": 0, |
|
"environment": 1 |
|
} |
|
|
|
|
|
config = Config() |
|
accelerator = Accelerator() |
|
device = accelerator.device |
|
|
|
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) |
|
test_dataset = dataset["test"] |
|
test_dataset = test_dataset.filter(lambda x: len(x["audio"]["array"]) > 0) |
|
true_labels = test_dataset["label"] |
|
|
|
test_dataset = AudioDataset(test_dataset) |
|
test_loader = DataLoader(test_dataset, batch_size=2 * config.BATCH_SIZE, shuffle=False, collate_fn=collate_fn, num_workers=config.NUM_WORKERS, pin_memory=True) |
|
|
|
model = AudioClassifier(config.MODEL_NAME, config.MODEL_PATH) |
|
model, test_loader = accelerator.prepare(model, test_loader) |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
predictions = [] |
|
|
|
logger.info("Running inference ...") |
|
evaluator = Evaluator(model, test_loader, device) |
|
predictions = evaluator.evaluate() |
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
print("accuracy", accuracy) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
return results |