import keras from keras.models import load_model import gradio as gr import cv2 my_model = load_model('Final_Chicken_disease_model.h5', compile=True) auth_model = load_model('auth_model.h5', compile=True) name_disease = {0: 'Coccidiosis', 1: 'Healthy', 2: 'New Castle Disease', 3: 'Salmonella'} result = {0: 'Critical', 1: 'No issue', 2: 'Critical', 3: 'Critical'} recommend = {0: 'Panadol', 1: 'You have no need of Medicine', 2: 'Percetamol', 3: 'Ponston'} def predict(image): image_check = cv2.resize(image, (224, 224)) indx = auth_model.predict(image_check.reshape(1, 224, 224, 3)).argmax() if indx == 0: image = cv2.resize(image, (224, 224)) indx = my_model.predict(image.reshape(1, 224, 224, 3)).argmax() name = name_disease.get(indx) status = result.get(indx) recom = recommend.get(indx) return name, status, recom else: name = 'Unknown Image' status = 'N/A' recom = 'N/A' return name, status, recom interface = gr.Interface(fn=predict, inputs=[gr.Image(label='upload Image')], outputs=[gr.components.Textbox(label="Disease Name"), gr.components.Textbox(label="result"), gr.components.Textbox(label='Medicine Recommend')], examples=[['disease.jpg'], ['ncd.jpg']]) interface.launch(debug=True)