Emmanuel Frimpong Asante
commited on
Commit
·
4a029da
1
Parent(s):
0db5898
update space
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import numpy as np
|
|
7 |
from huggingface_hub import login
|
8 |
from pymongo import MongoClient
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
10 |
|
11 |
# Ensure the Hugging Face token is set
|
12 |
tok = os.environ.get('HF_Token')
|
@@ -32,11 +33,18 @@ print("TensorFlow GPU Available:", tf.config.list_physical_devices('GPU'))
|
|
32 |
|
33 |
# Set TensorFlow to use mixed precision with available GPU
|
34 |
from tensorflow.keras import mixed_precision
|
|
|
35 |
if len(tf.config.list_physical_devices('GPU')) > 0:
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
else:
|
41 |
print("Using CPU without mixed precision")
|
42 |
|
@@ -46,11 +54,16 @@ try:
|
|
46 |
device_name = '/GPU:0' if len(tf.config.list_physical_devices('GPU')) > 0 else '/CPU:0'
|
47 |
print(f"Loading models on {device_name}...")
|
48 |
with tf.device(device_name):
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
print("Disease detection model loaded successfully.")
|
52 |
-
# Load the authentication model
|
53 |
-
auth_model = load_model('models/auth_model.h5', compile=True)
|
54 |
print("Authentication model loaded successfully.")
|
55 |
print(f"Models loaded successfully on {device_name}.")
|
56 |
except Exception as e:
|
@@ -66,6 +79,7 @@ recommend = {
|
|
66 |
3: 'Ponston'
|
67 |
}
|
68 |
|
|
|
69 |
class PoultryFarmBot:
|
70 |
def __init__(self):
|
71 |
self.db = db # MongoDB database for future use
|
@@ -114,7 +128,7 @@ class PoultryFarmBot:
|
|
114 |
# Generate a detailed response using Llama 2 for disease information and recommendations
|
115 |
def generate_disease_response(self, disease_name, status, recommendation):
|
116 |
print("Generating detailed disease response...")
|
117 |
-
# Create a prompt for Llama
|
118 |
prompt = (
|
119 |
f"The disease detected is {disease_name}, classified as {status}. "
|
120 |
f"Recommended action: {recommendation}. "
|
@@ -136,6 +150,7 @@ class PoultryFarmBot:
|
|
136 |
print("Invalid image provided.")
|
137 |
return "Please provide an image of poultry fecal matter for disease detection.", None, None, None
|
138 |
|
|
|
139 |
# Initialize the bot instance
|
140 |
print("Initializing PoultryFarmBot instance...")
|
141 |
bot = PoultryFarmBot()
|
@@ -154,7 +169,8 @@ if tokenizer.pad_token is None:
|
|
154 |
model.resize_token_embeddings(len(tokenizer))
|
155 |
print("Pad token added and model resized.")
|
156 |
|
157 |
-
|
|
|
158 |
def llama2_response(user_input):
|
159 |
try:
|
160 |
print("Generating response using Llama 2...")
|
@@ -178,6 +194,7 @@ def llama2_response(user_input):
|
|
178 |
print(f"Error generating response: {e}")
|
179 |
return f"Error generating response: {str(e)}"
|
180 |
|
|
|
181 |
# Main chatbot function: handles both generative AI and disease detection
|
182 |
def chatbot_response(image, text):
|
183 |
print("Received user input for chatbot response...")
|
@@ -193,9 +210,10 @@ def chatbot_response(image, text):
|
|
193 |
return diagnosis # Return only the diagnostic message if no disease found
|
194 |
else:
|
195 |
print("No image provided, using Llama 3.2 for text response...")
|
196 |
-
# Use Llama 2 for more accurate responses to user text queries
|
197 |
return llama2_response(text)
|
198 |
|
|
|
199 |
# Gradio interface styling and layout with ChatGPT-like theme
|
200 |
print("Setting up Gradio interface...")
|
201 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", neutral_hue="slate")) as chatbot_interface:
|
|
|
7 |
from huggingface_hub import login
|
8 |
from pymongo import MongoClient
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
from concurrent.futures import ThreadPoolExecutor
|
11 |
|
12 |
# Ensure the Hugging Face token is set
|
13 |
tok = os.environ.get('HF_Token')
|
|
|
33 |
|
34 |
# Set TensorFlow to use mixed precision with available GPU
|
35 |
from tensorflow.keras import mixed_precision
|
36 |
+
|
37 |
if len(tf.config.list_physical_devices('GPU')) > 0:
|
38 |
+
# Ensure the GPU supports mixed precision
|
39 |
+
gpu_device = tf.config.list_physical_devices('GPU')[0]
|
40 |
+
gpu_info = tf.config.experimental.get_device_details(gpu_device)
|
41 |
+
if 'compute_capability' in gpu_info and gpu_info['compute_capability'][0] >= 7:
|
42 |
+
# Set mixed precision policy to use float16 for better performance on supported GPUs
|
43 |
+
policy = mixed_precision.Policy('mixed_float16')
|
44 |
+
mixed_precision.set_global_policy(policy)
|
45 |
+
print("Using mixed precision with GPU")
|
46 |
+
else:
|
47 |
+
print("GPU does not support mixed precision or may not provide significant benefits. Using default precision.")
|
48 |
else:
|
49 |
print("Using CPU without mixed precision")
|
50 |
|
|
|
54 |
device_name = '/GPU:0' if len(tf.config.list_physical_devices('GPU')) > 0 else '/CPU:0'
|
55 |
print(f"Loading models on {device_name}...")
|
56 |
with tf.device(device_name):
|
57 |
+
def load_models():
|
58 |
+
with ThreadPoolExecutor() as executor:
|
59 |
+
future_disease_model = executor.submit(load_model, 'models/disease_model.h5', compile=True)
|
60 |
+
future_auth_model = executor.submit(load_model, 'models/auth_model.h5', compile=True)
|
61 |
+
return future_disease_model.result(), future_auth_model.result()
|
62 |
+
|
63 |
+
|
64 |
+
# Load models concurrently
|
65 |
+
my_model, auth_model = load_models()
|
66 |
print("Disease detection model loaded successfully.")
|
|
|
|
|
67 |
print("Authentication model loaded successfully.")
|
68 |
print(f"Models loaded successfully on {device_name}.")
|
69 |
except Exception as e:
|
|
|
79 |
3: 'Ponston'
|
80 |
}
|
81 |
|
82 |
+
|
83 |
class PoultryFarmBot:
|
84 |
def __init__(self):
|
85 |
self.db = db # MongoDB database for future use
|
|
|
128 |
# Generate a detailed response using Llama 2 for disease information and recommendations
|
129 |
def generate_disease_response(self, disease_name, status, recommendation):
|
130 |
print("Generating detailed disease response...")
|
131 |
+
# Create a prompt for Llama 2 to generate detailed disease information
|
132 |
prompt = (
|
133 |
f"The disease detected is {disease_name}, classified as {status}. "
|
134 |
f"Recommended action: {recommendation}. "
|
|
|
150 |
print("Invalid image provided.")
|
151 |
return "Please provide an image of poultry fecal matter for disease detection.", None, None, None
|
152 |
|
153 |
+
|
154 |
# Initialize the bot instance
|
155 |
print("Initializing PoultryFarmBot instance...")
|
156 |
bot = PoultryFarmBot()
|
|
|
169 |
model.resize_token_embeddings(len(tokenizer))
|
170 |
print("Pad token added and model resized.")
|
171 |
|
172 |
+
|
173 |
+
# Define Llama 3.2 response generation
|
174 |
def llama2_response(user_input):
|
175 |
try:
|
176 |
print("Generating response using Llama 2...")
|
|
|
194 |
print(f"Error generating response: {e}")
|
195 |
return f"Error generating response: {str(e)}"
|
196 |
|
197 |
+
|
198 |
# Main chatbot function: handles both generative AI and disease detection
|
199 |
def chatbot_response(image, text):
|
200 |
print("Received user input for chatbot response...")
|
|
|
210 |
return diagnosis # Return only the diagnostic message if no disease found
|
211 |
else:
|
212 |
print("No image provided, using Llama 3.2 for text response...")
|
213 |
+
# Use Llama 3.2 for more accurate responses to user text queries
|
214 |
return llama2_response(text)
|
215 |
|
216 |
+
|
217 |
# Gradio interface styling and layout with ChatGPT-like theme
|
218 |
print("Setting up Gradio interface...")
|
219 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", neutral_hue="slate")) as chatbot_interface:
|