Emmanuel Frimpong Asante
commited on
Commit
·
43bc0fa
1
Parent(s):
ed234f0
"Update space"
Browse filesSigned-off-by: Emmanuel Frimpong Asante <[email protected]>
app.py
CHANGED
|
@@ -19,7 +19,7 @@ auth_model = load_model('models/auth_model.h5', compile=True)
|
|
| 19 |
# Check for GPU availability and load the model accordingly
|
| 20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
|
| 22 |
-
# Load the tokenizer and model, ensuring they run on the correct device
|
| 23 |
llama_tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct')
|
| 24 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
'meta-llama/Meta-Llama-3-8B-Instruct',
|
|
@@ -48,46 +48,49 @@ def predict(image):
|
|
| 48 |
status = result.get(indx)
|
| 49 |
recom = recommend.get(indx)
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
else: # If the image is not recognized as a chicken disease image
|
| 53 |
return (
|
| 54 |
"The uploaded image is not recognized as a chicken or does not appear to be related to any known chicken diseases. "
|
| 55 |
"Please ensure the image is clear and shows a chicken or its symptoms to receive a proper diagnosis."
|
| 56 |
-
)
|
| 57 |
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
inputs = llama_tokenizer(user_input, return_tensors='pt').to(device) # Ensure tensors are on the right device
|
| 61 |
-
outputs = llama_model.generate(inputs['input_ids'], max_length=500, do_sample=True)
|
| 62 |
-
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 63 |
-
return response
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def combined_interface(image, text):
|
| 67 |
if image is not None:
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
elif text:
|
|
|
|
| 70 |
return chat_response(text)
|
| 71 |
else:
|
| 72 |
return "Please provide an image or ask a question."
|
| 73 |
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
example_image_path = None # Disable the example
|
| 81 |
|
| 82 |
-
# Only include the example if the path is valid
|
| 83 |
-
examples = [[example_image_path, ''], ['', 'What should I do if my chicken is sick?']] if example_image_path else None
|
| 84 |
|
| 85 |
-
#
|
| 86 |
interface = gr.Interface(
|
| 87 |
-
fn=
|
| 88 |
inputs=[gr.Image(label='Upload Image'), gr.Textbox(label='Ask a question')],
|
| 89 |
-
outputs=gr.Textbox(label="Response")
|
| 90 |
-
# examples=examples # Use examples only if valid
|
| 91 |
)
|
| 92 |
|
| 93 |
# Launch the interface
|
|
|
|
| 19 |
# Check for GPU availability and load the model accordingly
|
| 20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 21 |
|
| 22 |
+
# Load the tokenizer and LLaMA model, ensuring they run on the correct device
|
| 23 |
llama_tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct')
|
| 24 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
'meta-llama/Meta-Llama-3-8B-Instruct',
|
|
|
|
| 48 |
status = result.get(indx)
|
| 49 |
recom = recommend.get(indx)
|
| 50 |
|
| 51 |
+
diagnosis = f"The chicken is in a {status} condition, diagnosed with {name}. The recommended medication is {recom}."
|
| 52 |
+
return diagnosis, name, status, recom
|
| 53 |
else: # If the image is not recognized as a chicken disease image
|
| 54 |
return (
|
| 55 |
"The uploaded image is not recognized as a chicken or does not appear to be related to any known chicken diseases. "
|
| 56 |
"Please ensure the image is clear and shows a chicken or its symptoms to receive a proper diagnosis."
|
| 57 |
+
), None, None, None
|
| 58 |
|
| 59 |
|
| 60 |
+
def generate_combined_response(image, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if image is not None:
|
| 62 |
+
diagnosis, name, status, recom = predict(image)
|
| 63 |
+
|
| 64 |
+
if name and status and recom: # If the disease is recognized
|
| 65 |
+
# Generate a response using LLaMA based on the diagnosis
|
| 66 |
+
context = f"The chicken is in a {status} condition, diagnosed with {name}. The recommended medication is {recom}. "
|
| 67 |
+
if text:
|
| 68 |
+
context += f"Additionally, the user asked: '{text}'"
|
| 69 |
+
inputs = llama_tokenizer(context, return_tensors='pt').to(device)
|
| 70 |
+
outputs = llama_model.generate(inputs['input_ids'], max_length=500, do_sample=True)
|
| 71 |
+
advice = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 72 |
+
return diagnosis + "\n\nAdditional Advice: " + advice
|
| 73 |
+
else:
|
| 74 |
+
return diagnosis
|
| 75 |
elif text:
|
| 76 |
+
# Only text input provided, generate response using LLaMA
|
| 77 |
return chat_response(text)
|
| 78 |
else:
|
| 79 |
return "Please provide an image or ask a question."
|
| 80 |
|
| 81 |
|
| 82 |
+
def chat_response(user_input):
|
| 83 |
+
inputs = llama_tokenizer(user_input, return_tensors='pt').to(device)
|
| 84 |
+
outputs = llama_model.generate(inputs['input_ids'], max_length=500, do_sample=True)
|
| 85 |
+
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 86 |
+
return response
|
|
|
|
| 87 |
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Gradio Interface
|
| 90 |
interface = gr.Interface(
|
| 91 |
+
fn=generate_combined_response,
|
| 92 |
inputs=[gr.Image(label='Upload Image'), gr.Textbox(label='Ask a question')],
|
| 93 |
+
outputs=gr.Textbox(label="Response")
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
# Launch the interface
|