Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from torchvision.transforms import Compose
|
| 10 |
+
import tempfile
|
| 11 |
+
from functools import partial
|
| 12 |
+
import spaces
|
| 13 |
+
from zipfile import ZipFile
|
| 14 |
+
from vincenty import vincenty
|
| 15 |
+
import json
|
| 16 |
+
from collections import Counter
|
| 17 |
+
import mediapy
|
| 18 |
+
|
| 19 |
+
#from depth_anything.dpt import DepthAnything
|
| 20 |
+
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
| 21 |
+
from huggingface_hub import hf_hub_download
|
| 22 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 23 |
+
|
| 24 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 25 |
+
model_configs = {
|
| 26 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 27 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 28 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 29 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 30 |
+
}
|
| 31 |
+
encoder2name = {
|
| 32 |
+
'vits': 'Small',
|
| 33 |
+
'vitb': 'Base',
|
| 34 |
+
'vitl': 'Large',
|
| 35 |
+
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
edge = []
|
| 39 |
+
gradient = None
|
| 40 |
+
params = { "fnum":0, "l":16 }
|
| 41 |
+
dcolor = []
|
| 42 |
+
pcolors = []
|
| 43 |
+
frame_selected = 0
|
| 44 |
+
frames = []
|
| 45 |
+
depths = []
|
| 46 |
+
masks = []
|
| 47 |
+
locations = []
|
| 48 |
+
mesh = []
|
| 49 |
+
mesh_n = []
|
| 50 |
+
scene = None
|
| 51 |
+
|
| 52 |
+
def zip_files(files_in, files_out):
|
| 53 |
+
with ZipFile("depth_result.zip", "w") as zipObj:
|
| 54 |
+
for idx, file in enumerate(files_in):
|
| 55 |
+
zipObj.write(file, file.split("/")[-1])
|
| 56 |
+
for idx, file in enumerate(files_out):
|
| 57 |
+
zipObj.write(file, file.split("/")[-1])
|
| 58 |
+
return "depth_result.zip"
|
| 59 |
+
|
| 60 |
+
def create_video(frames, fps, type):
|
| 61 |
+
print("building video result")
|
| 62 |
+
imgs = []
|
| 63 |
+
for j, img in enumerate(frames):
|
| 64 |
+
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
|
| 65 |
+
|
| 66 |
+
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
|
| 67 |
+
return type + "_result.mp4"
|
| 68 |
+
|
| 69 |
+
@torch.no_grad()
|
| 70 |
+
#@spaces.GPU
|
| 71 |
+
def predict_depth(image, model):
|
| 72 |
+
return model.infer_image(image)
|
| 73 |
+
|
| 74 |
+
#def predict_depth(model, image):
|
| 75 |
+
# return model(image)["depth"]
|
| 76 |
+
|
| 77 |
+
def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
|
| 78 |
+
if encoder not in ["vitl","vitb","vits","vitg"]:
|
| 79 |
+
encoder = "vits"
|
| 80 |
+
|
| 81 |
+
model_name = encoder2name[encoder]
|
| 82 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
| 83 |
+
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
|
| 84 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
| 85 |
+
model.load_state_dict(state_dict)
|
| 86 |
+
model = model.to(DEVICE).eval()
|
| 87 |
+
|
| 88 |
+
#mapper = {"vits":"small","vitb":"base","vitl":"large"}
|
| 89 |
+
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 90 |
+
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
|
| 91 |
+
# Define path for temporary processed frames
|
| 92 |
+
#temp_frame_dir = tempfile.mkdtemp()
|
| 93 |
+
|
| 94 |
+
#margin_width = 50
|
| 95 |
+
#to_tensor_transform = transforms.ToTensor()
|
| 96 |
+
|
| 97 |
+
#DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 98 |
+
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
|
| 99 |
+
#depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
|
| 100 |
+
|
| 101 |
+
# total_params = sum(param.numel() for param in depth_anything.parameters())
|
| 102 |
+
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
|
| 103 |
+
|
| 104 |
+
#transform = Compose([
|
| 105 |
+
# Resize(
|
| 106 |
+
# width=518,
|
| 107 |
+
# height=518,
|
| 108 |
+
# resize_target=False,
|
| 109 |
+
# keep_aspect_ratio=True,
|
| 110 |
+
# ensure_multiple_of=14,
|
| 111 |
+
# resize_method='lower_bound',
|
| 112 |
+
# image_interpolation_method=cv2.INTER_CUBIC,
|
| 113 |
+
# ),
|
| 114 |
+
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 115 |
+
# PrepareForNet(),
|
| 116 |
+
#])
|
| 117 |
+
|
| 118 |
+
if os.path.isfile(video_path):
|
| 119 |
+
if video_path.endswith('txt'):
|
| 120 |
+
with open(video_path, 'r') as f:
|
| 121 |
+
lines = f.read().splitlines()
|
| 122 |
+
else:
|
| 123 |
+
filenames = [video_path]
|
| 124 |
+
else:
|
| 125 |
+
filenames = os.listdir(video_path)
|
| 126 |
+
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
|
| 127 |
+
filenames.sort()
|
| 128 |
+
|
| 129 |
+
# os.makedirs(outdir, exist_ok=True)
|
| 130 |
+
|
| 131 |
+
for k, filename in enumerate(filenames):
|
| 132 |
+
file_size = os.path.getsize(filename)/1024/1024
|
| 133 |
+
if file_size > 128.0:
|
| 134 |
+
print(f'File size of {filename} larger than 128Mb, sorry!')
|
| 135 |
+
return filename
|
| 136 |
+
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
|
| 137 |
+
|
| 138 |
+
raw_video = cv2.VideoCapture(filename)
|
| 139 |
+
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 140 |
+
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
|
| 141 |
+
if frame_rate < 1:
|
| 142 |
+
frame_rate = 1
|
| 143 |
+
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 144 |
+
print(f'frames: {cframes}, fps: {frame_rate}')
|
| 145 |
+
# output_width = frame_width * 2 + margin_width
|
| 146 |
+
|
| 147 |
+
#filename = os.path.basename(filename)
|
| 148 |
+
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
|
| 149 |
+
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
|
| 150 |
+
# output_path = tmpfile.name
|
| 151 |
+
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
|
| 152 |
+
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 153 |
+
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
|
| 154 |
+
global masks
|
| 155 |
+
count = 0
|
| 156 |
+
n = 0
|
| 157 |
+
depth_frames = []
|
| 158 |
+
orig_frames = []
|
| 159 |
+
thumbnail_old = []
|
| 160 |
+
|
| 161 |
+
while raw_video.isOpened():
|
| 162 |
+
ret, raw_frame = raw_video.read()
|
| 163 |
+
if not ret:
|
| 164 |
+
break
|
| 165 |
+
else:
|
| 166 |
+
print(count)
|
| 167 |
+
|
| 168 |
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
|
| 169 |
+
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
|
| 170 |
+
#frame = transform({'image': frame})['image']
|
| 171 |
+
#frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
|
| 172 |
+
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
|
| 173 |
+
|
| 174 |
+
#
|
| 175 |
+
depth = predict_depth(raw_frame[:, :, ::-1], model)
|
| 176 |
+
depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
|
| 177 |
+
#
|
| 178 |
+
|
| 179 |
+
#depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
|
| 180 |
+
#depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
|
| 181 |
+
#depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 182 |
+
#depth = depth.cpu().numpy().astype(np.uint8)
|
| 183 |
+
#depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
|
| 184 |
+
#depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
|
| 185 |
+
|
| 186 |
+
# Remove white border around map:
|
| 187 |
+
# define lower and upper limits of white
|
| 188 |
+
#white_lo = np.array([250,250,250])
|
| 189 |
+
#white_hi = np.array([255,255,255])
|
| 190 |
+
# mask image to only select white
|
| 191 |
+
mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
|
| 192 |
+
# change image to black where we found white
|
| 193 |
+
depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0
|
| 194 |
+
|
| 195 |
+
mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
|
| 196 |
+
depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160
|
| 197 |
+
|
| 198 |
+
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
|
| 199 |
+
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
|
| 200 |
+
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
|
| 201 |
+
|
| 202 |
+
# out.write(combined_frame)
|
| 203 |
+
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
|
| 204 |
+
# cv2.imwrite(frame_path, combined_frame)
|
| 205 |
+
|
| 206 |
+
#raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
|
| 207 |
+
#raw_frame[:, :, 3] = 255
|
| 208 |
+
|
| 209 |
+
if cframes < 16:
|
| 210 |
+
thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
|
| 211 |
+
if len(thumbnail_old) > 0:
|
| 212 |
+
diff = thumbnail - thumbnail_old
|
| 213 |
+
#print(diff)
|
| 214 |
+
c = Counter(diff)
|
| 215 |
+
value, cc = c.most_common()[0]
|
| 216 |
+
if value == 0 and cc > int(16*32*0.8):
|
| 217 |
+
count += 1
|
| 218 |
+
continue
|
| 219 |
+
thumbnail_old = thumbnail
|
| 220 |
+
|
| 221 |
+
cv2.imwrite(f"f{count}.png", raw_frame)
|
| 222 |
+
orig_frames.append(f"f{count}.png")
|
| 223 |
+
|
| 224 |
+
cv2.imwrite(f"f{count}_dmap.png", depth_color)
|
| 225 |
+
depth_frames.append(f"f{count}_dmap.png")
|
| 226 |
+
|
| 227 |
+
cv2.imwrite(f"f{count}_mask.png", depth_gray)
|
| 228 |
+
masks.append(f"f{count}_mask.png")
|
| 229 |
+
count += 1
|
| 230 |
+
|
| 231 |
+
#final_vid = create_video(orig_frames, frame_rate, "orig")
|
| 232 |
+
final_vid = create_video(depth_frames, frame_rate, "depth")
|
| 233 |
+
|
| 234 |
+
final_zip = zip_files(orig_frames, depth_frames)
|
| 235 |
+
raw_video.release()
|
| 236 |
+
# out.release()
|
| 237 |
+
cv2.destroyAllWindows()
|
| 238 |
+
|
| 239 |
+
global gradient
|
| 240 |
+
global frame_selected
|
| 241 |
+
global depths
|
| 242 |
+
global frames
|
| 243 |
+
frames = orig_frames
|
| 244 |
+
depths = depth_frames
|
| 245 |
+
|
| 246 |
+
if depth_color.shape[0] == 2048: #height
|
| 247 |
+
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
|
| 248 |
+
elif depth_color.shape[0] == 1024:
|
| 249 |
+
gradient = cv2.imread('./gradient.png').astype(np.uint8)
|
| 250 |
+
else:
|
| 251 |
+
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
|
| 252 |
+
|
| 253 |
+
return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
|
| 254 |
+
|
| 255 |
+
def depth_edges_mask(depth):
|
| 256 |
+
"""Returns a mask of edges in the depth map.
|
| 257 |
+
Args:
|
| 258 |
+
depth: 2D numpy array of shape (H, W) with dtype float32.
|
| 259 |
+
Returns:
|
| 260 |
+
mask: 2D numpy array of shape (H, W) with dtype bool.
|
| 261 |
+
"""
|
| 262 |
+
# Compute the x and y gradients of the depth map.
|
| 263 |
+
depth_dx, depth_dy = np.gradient(depth)
|
| 264 |
+
# Compute the gradient magnitude.
|
| 265 |
+
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
|
| 266 |
+
# Compute the edge mask.
|
| 267 |
+
mask = depth_grad > 0.05
|
| 268 |
+
return mask
|
| 269 |
+
|
| 270 |
+
def pano_depth_to_world_points(depth):
|
| 271 |
+
"""
|
| 272 |
+
360 depth to world points
|
| 273 |
+
given 2D depth is an equirectangular projection of a spherical image
|
| 274 |
+
Treat depth as radius
|
| 275 |
+
longitude : -pi to pi
|
| 276 |
+
latitude : -pi/2 to pi/2
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
# Convert depth to radius
|
| 280 |
+
radius = (255 - depth.flatten())
|
| 281 |
+
|
| 282 |
+
lon = np.linspace(0, np.pi*2, depth.shape[1])
|
| 283 |
+
lat = np.linspace(0, np.pi, depth.shape[0])
|
| 284 |
+
lon, lat = np.meshgrid(lon, lat)
|
| 285 |
+
lon = lon.flatten()
|
| 286 |
+
lat = lat.flatten()
|
| 287 |
+
|
| 288 |
+
pts3d = [[0,0,0]]
|
| 289 |
+
uv = [[0,0]]
|
| 290 |
+
nl = [[0,0,0]]
|
| 291 |
+
for i in range(0, 1): #(0,2)
|
| 292 |
+
for j in range(0, 1): #(0,2)
|
| 293 |
+
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
|
| 294 |
+
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
|
| 295 |
+
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
|
| 296 |
+
d_lat = lat + j/2 * np.pi / depth.shape[0]
|
| 297 |
+
|
| 298 |
+
nx = np.cos(d_lon) * np.sin(d_lat)
|
| 299 |
+
ny = np.cos(d_lat)
|
| 300 |
+
nz = np.sin(d_lon) * np.sin(d_lat)
|
| 301 |
+
|
| 302 |
+
# Convert to cartesian coordinates
|
| 303 |
+
x = radius * nx
|
| 304 |
+
y = radius * ny
|
| 305 |
+
z = radius * nz
|
| 306 |
+
|
| 307 |
+
pts = np.stack([x, y, z], axis=1)
|
| 308 |
+
uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
|
| 309 |
+
nls = np.stack([-nx, -ny, -nz], axis=1)
|
| 310 |
+
|
| 311 |
+
pts3d = np.concatenate((pts3d, pts), axis=0)
|
| 312 |
+
uv = np.concatenate((uv, uvs), axis=0)
|
| 313 |
+
nl = np.concatenate((nl, nls), axis=0)
|
| 314 |
+
#print(f'i: {i}, j: {j}')
|
| 315 |
+
j = j+1
|
| 316 |
+
i = i+1
|
| 317 |
+
|
| 318 |
+
return [pts3d, uv, nl]
|
| 319 |
+
|
| 320 |
+
def rgb2gray(rgb):
|
| 321 |
+
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
|
| 322 |
+
|
| 323 |
+
def get_mesh(image, depth, blur_data, loadall):
|
| 324 |
+
global depths
|
| 325 |
+
global pcolors
|
| 326 |
+
global frame_selected
|
| 327 |
+
global mesh
|
| 328 |
+
global mesh_n
|
| 329 |
+
global scene
|
| 330 |
+
if loadall == False:
|
| 331 |
+
mesh = []
|
| 332 |
+
mesh_n = []
|
| 333 |
+
fnum = frame_selected
|
| 334 |
+
|
| 335 |
+
#print(image[fnum][0])
|
| 336 |
+
#print(depth["composite"])
|
| 337 |
+
|
| 338 |
+
depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
|
| 339 |
+
blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
|
| 340 |
+
gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
|
| 341 |
+
|
| 342 |
+
print('depth to gray - ok')
|
| 343 |
+
points = pano_depth_to_world_points(gdepth)
|
| 344 |
+
pts3d = points[0]
|
| 345 |
+
uv = points[1]
|
| 346 |
+
nl = points[2]
|
| 347 |
+
print('radius from depth - ok')
|
| 348 |
+
|
| 349 |
+
# Create a trimesh mesh from the points
|
| 350 |
+
# Each pixel is connected to its 4 neighbors
|
| 351 |
+
# colors are the RGB values of the image
|
| 352 |
+
uvs = uv.reshape(-1, 2)
|
| 353 |
+
#print(uvs)
|
| 354 |
+
#verts = pts3d.reshape(-1, 3)
|
| 355 |
+
verts = [[0,0,0]]
|
| 356 |
+
normals = nl.reshape(-1, 3)
|
| 357 |
+
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
|
| 358 |
+
colors = rgba.reshape(-1, 4)
|
| 359 |
+
clrs = [[128,128,128,0]]
|
| 360 |
+
|
| 361 |
+
#for i in range(0,1): #(0,4)
|
| 362 |
+
#clrs = np.concatenate((clrs, colors), axis=0)
|
| 363 |
+
#i = i+1
|
| 364 |
+
#verts, clrs
|
| 365 |
+
|
| 366 |
+
#pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
|
| 367 |
+
#pcd.compute_vertex_normals()
|
| 368 |
+
#pcd.paint_uniform_color((1.0, 1.0, 1.0))
|
| 369 |
+
#mesh.append(pcd)
|
| 370 |
+
#print(mesh[len(mesh)-1])
|
| 371 |
+
if not str(fnum) in mesh_n:
|
| 372 |
+
mesh_n.append(str(fnum))
|
| 373 |
+
print('mesh - ok')
|
| 374 |
+
|
| 375 |
+
# Save as glb
|
| 376 |
+
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
|
| 377 |
+
#o3d.io.write_triangle_mesh(glb_file.name, pcd)
|
| 378 |
+
print('file - ok')
|
| 379 |
+
return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)
|
| 380 |
+
|
| 381 |
+
def blur_image(image, depth, blur_data):
|
| 382 |
+
blur_a = blur_data.split()
|
| 383 |
+
print(f'blur data {blur_data}')
|
| 384 |
+
|
| 385 |
+
blur_frame = image.copy()
|
| 386 |
+
j = 0
|
| 387 |
+
while j < 256:
|
| 388 |
+
i = 255 - j
|
| 389 |
+
blur_lo = np.array([i,i,i])
|
| 390 |
+
blur_hi = np.array([i+1,i+1,i+1])
|
| 391 |
+
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
|
| 392 |
+
|
| 393 |
+
print(f'kernel size {int(blur_a[j])}')
|
| 394 |
+
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
|
| 395 |
+
|
| 396 |
+
blur_frame[blur_mask>0] = blur[blur_mask>0]
|
| 397 |
+
j = j + 1
|
| 398 |
+
|
| 399 |
+
return blur_frame
|
| 400 |
+
|
| 401 |
+
def loadfile(f):
|
| 402 |
+
return f
|
| 403 |
+
|
| 404 |
+
def show_json(txt):
|
| 405 |
+
data = json.loads(txt)
|
| 406 |
+
print(txt)
|
| 407 |
+
i=0
|
| 408 |
+
while i < len(data[2]):
|
| 409 |
+
data[2][i] = data[2][i]["image"]["path"]
|
| 410 |
+
data[4][i] = data[4][i]["path"]
|
| 411 |
+
i=i+1
|
| 412 |
+
return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def select_frame(d, evt: gr.SelectData):
|
| 416 |
+
global dcolor
|
| 417 |
+
global frame_selected
|
| 418 |
+
global masks
|
| 419 |
+
global edge
|
| 420 |
+
|
| 421 |
+
if evt.index != frame_selected:
|
| 422 |
+
edge = []
|
| 423 |
+
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
|
| 424 |
+
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
|
| 425 |
+
frame_selected = evt.index
|
| 426 |
+
|
| 427 |
+
if len(dcolor) == 0:
|
| 428 |
+
bg = [127, 127, 127, 255]
|
| 429 |
+
else:
|
| 430 |
+
bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
|
| 431 |
+
|
| 432 |
+
return masks[frame_selected], frame_selected, bg
|
| 433 |
+
|
| 434 |
+
def switch_rows(v):
|
| 435 |
+
global frames
|
| 436 |
+
global depths
|
| 437 |
+
if v == True:
|
| 438 |
+
print(depths[0])
|
| 439 |
+
return depths
|
| 440 |
+
else:
|
| 441 |
+
print(frames[0])
|
| 442 |
+
return frames
|
| 443 |
+
|
| 444 |
+
def optimize(v, d):
|
| 445 |
+
global pcolors
|
| 446 |
+
global dcolor
|
| 447 |
+
global frame_selected
|
| 448 |
+
global frames
|
| 449 |
+
global depths
|
| 450 |
+
|
| 451 |
+
if v == True:
|
| 452 |
+
ddepth = cv2.CV_16S
|
| 453 |
+
kernel_size = 3
|
| 454 |
+
l = 16
|
| 455 |
+
|
| 456 |
+
dcolor = []
|
| 457 |
+
for k, f in enumerate(frames):
|
| 458 |
+
frame = cv2.imread(frames[k]).astype(np.uint8)
|
| 459 |
+
|
| 460 |
+
# convert to np.float32
|
| 461 |
+
f = np.float32(frame.reshape((-1,3)))
|
| 462 |
+
# define criteria, number of clusters(K) and apply kmeans()
|
| 463 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
|
| 464 |
+
ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
|
| 465 |
+
# Now convert back into uint8, and make original image
|
| 466 |
+
center = np.uint8(center)
|
| 467 |
+
res = center[label.flatten()]
|
| 468 |
+
frame = res.reshape((frame.shape))
|
| 469 |
+
|
| 470 |
+
depth = cv2.imread(depths[k]).astype(np.uint8)
|
| 471 |
+
mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
|
| 472 |
+
dcolor.append(bincount(frame[mask==0]))
|
| 473 |
+
print(dcolor[k])
|
| 474 |
+
clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
|
| 475 |
+
i=0
|
| 476 |
+
while i<len(clrs):
|
| 477 |
+
clrs[i] = list(clrs[i][1])
|
| 478 |
+
clrs[i].append(255)
|
| 479 |
+
i=i+1
|
| 480 |
+
print(clrs)
|
| 481 |
+
pcolors = clrs
|
| 482 |
+
|
| 483 |
+
#mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
|
| 484 |
+
#mask[mask>0] = 255
|
| 485 |
+
#frame[mask==0] = (0, 0, 0)
|
| 486 |
+
cv2.imwrite(frames[k], frame)
|
| 487 |
+
|
| 488 |
+
#depth[mask==0] = (255,255,255)
|
| 489 |
+
mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
|
| 490 |
+
depth[mask>0] = (255,255,255)
|
| 491 |
+
depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
|
| 492 |
+
depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
|
| 493 |
+
cv2.imwrite(depths[k], depth)
|
| 494 |
+
|
| 495 |
+
if d == False:
|
| 496 |
+
return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
|
| 497 |
+
else:
|
| 498 |
+
return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
|
| 499 |
+
|
| 500 |
+
def bincount(a):
|
| 501 |
+
a2D = a.reshape(-1,a.shape[-1])
|
| 502 |
+
col_range = (256, 256, 256) # generically : a2D.max(0)+1
|
| 503 |
+
a1D = np.ravel_multi_index(a2D.T, col_range)
|
| 504 |
+
return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
|
| 505 |
+
|
| 506 |
+
def reset_mask():
|
| 507 |
+
global frame_selected
|
| 508 |
+
global masks
|
| 509 |
+
global depths
|
| 510 |
+
global edge
|
| 511 |
+
|
| 512 |
+
edge = []
|
| 513 |
+
mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
|
| 514 |
+
cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
|
| 515 |
+
return masks[frame_selected], depths
|
| 516 |
+
|
| 517 |
+
def apply_mask(d, b):
|
| 518 |
+
global frames
|
| 519 |
+
global frame_selected
|
| 520 |
+
global masks
|
| 521 |
+
global depths
|
| 522 |
+
global edge
|
| 523 |
+
|
| 524 |
+
edge = []
|
| 525 |
+
mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
|
| 526 |
+
mask[mask<255] = 0
|
| 527 |
+
b = b*2+1
|
| 528 |
+
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
|
| 529 |
+
mask = cv2.dilate(mask, dilation)
|
| 530 |
+
mask_b = cv2.GaussianBlur(mask, (b,b), 0)
|
| 531 |
+
b = b*2+1
|
| 532 |
+
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
|
| 533 |
+
dmask = cv2.dilate(mask, dilation)
|
| 534 |
+
dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)
|
| 535 |
+
|
| 536 |
+
for k, mk in enumerate(masks):
|
| 537 |
+
if k != frame_selected and k < len(depths):
|
| 538 |
+
cv2.imwrite(masks[k], dmask)
|
| 539 |
+
frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
|
| 540 |
+
frame[:, :, 3] = dmask_b
|
| 541 |
+
cv2.imwrite(frames[k], frame)
|
| 542 |
+
|
| 543 |
+
frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
|
| 544 |
+
frame[:, :, 3] = 255 - mask_b
|
| 545 |
+
cv2.imwrite(frames[frame_selected], frame)
|
| 546 |
+
|
| 547 |
+
cv2.imwrite(masks[frame_selected], mask) #d["background"]
|
| 548 |
+
return masks[frame_selected], depths, frames
|
| 549 |
+
|
| 550 |
+
def draw_mask(l, t, v, d, evt: gr.EventData):
|
| 551 |
+
global depths
|
| 552 |
+
global params
|
| 553 |
+
global frame_selected
|
| 554 |
+
global masks
|
| 555 |
+
global gradient
|
| 556 |
+
global edge
|
| 557 |
+
|
| 558 |
+
points = json.loads(v)
|
| 559 |
+
pts = np.array(points, np.int32)
|
| 560 |
+
pts = pts.reshape((-1,1,2))
|
| 561 |
+
|
| 562 |
+
if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
|
| 563 |
+
if len(edge) > 0:
|
| 564 |
+
d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
|
| 565 |
+
|
| 566 |
+
if d["background"].shape[0] == 2048: #height
|
| 567 |
+
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
|
| 568 |
+
elif d["background"].shape[0] == 1024:
|
| 569 |
+
gradient = cv2.imread('./gradient.png').astype(np.uint8)
|
| 570 |
+
else:
|
| 571 |
+
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
|
| 572 |
+
|
| 573 |
+
bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
|
| 574 |
+
|
| 575 |
+
diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
|
| 576 |
+
mask = cv2.inRange(diff, 0, t)
|
| 577 |
+
#kernel = np.ones((c,c),np.float32)/(c*c)
|
| 578 |
+
#mask = cv2.filter2D(mask,-1,kernel)
|
| 579 |
+
dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
|
| 580 |
+
mask = cv2.dilate(mask, dilation)
|
| 581 |
+
|
| 582 |
+
#indices = np.arange(0,256) # List of all colors
|
| 583 |
+
#divider = np.linspace(0,255,l+1)[1] # we get a divider
|
| 584 |
+
#quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
|
| 585 |
+
#color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
|
| 586 |
+
#palette = quantiz[color_levels]
|
| 587 |
+
|
| 588 |
+
#for i in range(l):
|
| 589 |
+
# bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
|
| 590 |
+
#bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint
|
| 591 |
+
|
| 592 |
+
res = np.float32(bg.reshape((-1,1)))
|
| 593 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
|
| 594 |
+
ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
|
| 595 |
+
center = np.uint8(center)
|
| 596 |
+
res = center[label.flatten()]
|
| 597 |
+
bg = res.reshape((bg.shape))
|
| 598 |
+
|
| 599 |
+
bg[mask>0] = 0
|
| 600 |
+
bg[bg==255] = 0
|
| 601 |
+
|
| 602 |
+
params["fnum"] = frame_selected
|
| 603 |
+
params["l"] = l
|
| 604 |
+
|
| 605 |
+
d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
|
| 606 |
+
edge = bg.copy()
|
| 607 |
+
else:
|
| 608 |
+
bg = edge.copy()
|
| 609 |
+
|
| 610 |
+
x = points[len(points)-1][0]
|
| 611 |
+
y = points[len(points)-1][1]
|
| 612 |
+
|
| 613 |
+
#int(t*256/l)
|
| 614 |
+
mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
|
| 615 |
+
# 255 << 8 tells to fill with the value 255)
|
| 616 |
+
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
|
| 617 |
+
|
| 618 |
+
d["layers"][0][mask>0] = (255,255,255,255)
|
| 619 |
+
|
| 620 |
+
return gr.ImageEditor(value=d)
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
def findNormals(format):
|
| 624 |
+
global depths
|
| 625 |
+
d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
|
| 626 |
+
zy, zx = np.gradient(d_im)
|
| 627 |
+
# You may also consider using Sobel to get a joint Gaussian smoothing and differentation
|
| 628 |
+
# to reduce noise
|
| 629 |
+
#zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
|
| 630 |
+
#zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
|
| 631 |
+
|
| 632 |
+
if format == "opengl":
|
| 633 |
+
zy = -zy
|
| 634 |
+
|
| 635 |
+
normal = np.dstack((np.ones_like(d_im), -zy, -zx))
|
| 636 |
+
n = np.linalg.norm(normal, axis=2)
|
| 637 |
+
normal[:, :, 0] /= n
|
| 638 |
+
normal[:, :, 1] /= n
|
| 639 |
+
normal[:, :, 2] /= n
|
| 640 |
+
|
| 641 |
+
# offset and rescale values to be in 0-255
|
| 642 |
+
normal += 1
|
| 643 |
+
normal /= 2
|
| 644 |
+
normal *= 255
|
| 645 |
+
|
| 646 |
+
return (normal[:, :, ::-1]).astype(np.uint8)
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
load_model="""
|
| 650 |
+
async(c, o, b, p, d, n, m)=>{
|
| 651 |
+
var intv = setInterval(function(){
|
| 652 |
+
if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
|
| 653 |
+
try {
|
| 654 |
+
if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
|
| 655 |
+
BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
|
| 656 |
+
|
| 657 |
+
var then = new Date().getTime();
|
| 658 |
+
var now, delta;
|
| 659 |
+
const interval = 1000 / 25;
|
| 660 |
+
const tolerance = 0.1;
|
| 661 |
+
BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
|
| 662 |
+
BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
|
| 663 |
+
now = new Date().getTime();
|
| 664 |
+
delta = now - then;
|
| 665 |
+
then = now - (delta % interval);
|
| 666 |
+
if (delta >= interval - tolerance) {
|
| 667 |
+
BABYLON.Engine.LastCreatedScene.render();
|
| 668 |
+
}
|
| 669 |
+
});
|
| 670 |
+
|
| 671 |
+
var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
|
| 672 |
+
BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
|
| 673 |
+
for (var i=0; i<bg.length; i++) {
|
| 674 |
+
bg[i] /= 255;
|
| 675 |
+
}
|
| 676 |
+
BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
|
| 677 |
+
BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
|
| 678 |
+
//BABYLON.Engine.LastCreatedScene.autoClear = false;
|
| 679 |
+
//BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
|
| 680 |
+
for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
|
| 681 |
+
if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
|
| 682 |
+
BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
|
| 683 |
+
}
|
| 684 |
+
}
|
| 685 |
+
BABYLON.Engine.LastCreatedScene.getAnimationRatio();
|
| 686 |
+
//BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
|
| 687 |
+
});
|
| 688 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 689 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
|
| 690 |
+
pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
|
| 691 |
+
}
|
| 692 |
+
}
|
| 693 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
|
| 694 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
|
| 695 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
|
| 696 |
+
|
| 697 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
|
| 698 |
+
|
| 699 |
+
document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
|
| 700 |
+
document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
|
| 701 |
+
document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
|
| 702 |
+
|
| 703 |
+
if (o.indexOf(""+n) < 0) {
|
| 704 |
+
if (o != "") { o += ","; }
|
| 705 |
+
o += n;
|
| 706 |
+
}
|
| 707 |
+
//alert(o);
|
| 708 |
+
var o_ = o.split(",");
|
| 709 |
+
var q = BABYLON.Engine.LastCreatedScene.meshes;
|
| 710 |
+
for(i = 0; i < q.length; i++) {
|
| 711 |
+
let mesh = q[i];
|
| 712 |
+
mesh.dispose(false, true);
|
| 713 |
+
}
|
| 714 |
+
var dome = [];
|
| 715 |
+
for (var j=0; j<o_.length; j++) {
|
| 716 |
+
o_[j] = parseInt(o_[j]);
|
| 717 |
+
dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
|
| 718 |
+
{
|
| 719 |
+
resolution: 16,
|
| 720 |
+
size: 512
|
| 721 |
+
}, BABYLON.Engine.LastCreatedScene);
|
| 722 |
+
var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
|
| 723 |
+
for(i = 0; i < q.length; i++) {
|
| 724 |
+
let mesh = q[i];
|
| 725 |
+
mesh.dispose(false, true);
|
| 726 |
+
}
|
| 727 |
+
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
|
| 728 |
+
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
|
| 729 |
+
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
|
| 730 |
+
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
|
| 731 |
+
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
|
| 732 |
+
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
|
| 733 |
+
}
|
| 734 |
+
clearInterval(intv);
|
| 735 |
+
}
|
| 736 |
+
} catch(e) {alert(e);}
|
| 737 |
+
} else if (BABYLON || BABYLON == null) {
|
| 738 |
+
try {
|
| 739 |
+
BABYLON = null;
|
| 740 |
+
if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
|
| 741 |
+
document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
|
| 742 |
+
}
|
| 743 |
+
document.getElementById("iframe3D").src = "index.htm";
|
| 744 |
+
document.getElementById("iframe3D").onload = function() {
|
| 745 |
+
if (o.indexOf(""+n) < 0) {
|
| 746 |
+
if (o != "") { o += ","; }
|
| 747 |
+
o += n;
|
| 748 |
+
}
|
| 749 |
+
alert(o);
|
| 750 |
+
var o_ = o.split(",");
|
| 751 |
+
document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
|
| 752 |
+
document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
|
| 753 |
+
document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
|
| 754 |
+
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
|
| 755 |
+
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
|
| 756 |
+
for (var j=0; j<o_.length; j++) {
|
| 757 |
+
o_[j] = parseInt(o_[j]);
|
| 758 |
+
alert(o_[j]);
|
| 759 |
+
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
|
| 760 |
+
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
|
| 761 |
+
}
|
| 762 |
+
}
|
| 763 |
+
toggleDisplay("model");
|
| 764 |
+
|
| 765 |
+
clearInterval(intv);
|
| 766 |
+
} catch(e) {alert(e)}
|
| 767 |
+
}
|
| 768 |
+
}, 40);
|
| 769 |
+
}
|
| 770 |
+
"""
|
| 771 |
+
|
| 772 |
+
js = """
|
| 773 |
+
async()=>{
|
| 774 |
+
console.log('Hi');
|
| 775 |
+
|
| 776 |
+
const chart = document.getElementById('chart');
|
| 777 |
+
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
|
| 778 |
+
var md = false;
|
| 779 |
+
var xold = 128;
|
| 780 |
+
var yold = 32;
|
| 781 |
+
var a = new Array(256);
|
| 782 |
+
var l;
|
| 783 |
+
|
| 784 |
+
for (var i=0; i<256; i++) {
|
| 785 |
+
const hr = document.createElement('hr');
|
| 786 |
+
hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
|
| 787 |
+
chart.appendChild(hr);
|
| 788 |
+
}
|
| 789 |
+
|
| 790 |
+
function resetLine() {
|
| 791 |
+
a.fill(1);
|
| 792 |
+
for (var i=0; i<256; i++) {
|
| 793 |
+
chart.childNodes[i].style.height = a[i] + 'px';
|
| 794 |
+
chart.childNodes[i].style.marginTop = '32px';
|
| 795 |
+
}
|
| 796 |
+
}
|
| 797 |
+
resetLine();
|
| 798 |
+
window.resetLine = resetLine;
|
| 799 |
+
|
| 800 |
+
function pointerDown(x, y) {
|
| 801 |
+
md = true;
|
| 802 |
+
xold = parseInt(x - chart.getBoundingClientRect().x);
|
| 803 |
+
yold = parseInt(y - chart.getBoundingClientRect().y);
|
| 804 |
+
chart.title = xold + ',' + yold;
|
| 805 |
+
}
|
| 806 |
+
window.pointerDown = pointerDown;
|
| 807 |
+
|
| 808 |
+
function pointerUp() {
|
| 809 |
+
md = false;
|
| 810 |
+
var evt = document.createEvent('Event');
|
| 811 |
+
evt.initEvent('input', true, false);
|
| 812 |
+
blur_in.dispatchEvent(evt);
|
| 813 |
+
chart.title = '';
|
| 814 |
+
}
|
| 815 |
+
window.pointerUp = pointerUp;
|
| 816 |
+
|
| 817 |
+
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
|
| 818 |
+
|
| 819 |
+
function drawLine(x, y) {
|
| 820 |
+
x = parseInt(x - chart.getBoundingClientRect().x);
|
| 821 |
+
y = parseInt(y - chart.getBoundingClientRect().y);
|
| 822 |
+
if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
|
| 823 |
+
if (y < 32) {
|
| 824 |
+
a[x] = Math.abs(32-y)*2 + 1;
|
| 825 |
+
chart.childNodes[x].style.height = a[x] + 'px';
|
| 826 |
+
chart.childNodes[x].style.marginTop = y + 'px';
|
| 827 |
+
|
| 828 |
+
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
|
| 829 |
+
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
|
| 830 |
+
|
| 831 |
+
if (l < 32) {
|
| 832 |
+
a[i] = Math.abs(32-l)*2 + 1;
|
| 833 |
+
chart.childNodes[i].style.height = a[i] + 'px';
|
| 834 |
+
chart.childNodes[i].style.marginTop = l + 'px';
|
| 835 |
+
} else if (l < 64) {
|
| 836 |
+
a[i] = Math.abs(l-32)*2 + 1;
|
| 837 |
+
chart.childNodes[i].style.height = a[i] + 'px';
|
| 838 |
+
chart.childNodes[i].style.marginTop = (64-l) + 'px';
|
| 839 |
+
}
|
| 840 |
+
}
|
| 841 |
+
} else if (y < 64) {
|
| 842 |
+
a[x] = Math.abs(y-32)*2 + 1;
|
| 843 |
+
chart.childNodes[x].style.height = a[x] + 'px';
|
| 844 |
+
chart.childNodes[x].style.marginTop = (64-y) + 'px';
|
| 845 |
+
|
| 846 |
+
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
|
| 847 |
+
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
|
| 848 |
+
|
| 849 |
+
if (l < 32) {
|
| 850 |
+
a[i] = Math.abs(32-l)*2 + 1;
|
| 851 |
+
chart.childNodes[i].style.height = a[i] + 'px';
|
| 852 |
+
chart.childNodes[i].style.marginTop = l + 'px';
|
| 853 |
+
} else if (l < 64) {
|
| 854 |
+
a[i] = Math.abs(l-32)*2 + 1;
|
| 855 |
+
chart.childNodes[i].style.height = a[i] + 'px';
|
| 856 |
+
chart.childNodes[i].style.marginTop = (64-l) + 'px';
|
| 857 |
+
}
|
| 858 |
+
}
|
| 859 |
+
}
|
| 860 |
+
blur_in.value = a.join(' ');
|
| 861 |
+
xold = x;
|
| 862 |
+
yold = y;
|
| 863 |
+
chart.title = xold + ',' + yold;
|
| 864 |
+
}
|
| 865 |
+
}
|
| 866 |
+
window.drawLine = drawLine;
|
| 867 |
+
|
| 868 |
+
}
|
| 869 |
+
"""
|
| 870 |
+
|
| 871 |
+
css = """
|
| 872 |
+
#img-display-container {
|
| 873 |
+
max-height: 100vh;
|
| 874 |
+
}
|
| 875 |
+
#img-display-input {
|
| 876 |
+
max-height: 80vh;
|
| 877 |
+
}
|
| 878 |
+
#img-display-output {
|
| 879 |
+
max-height: 80vh;
|
| 880 |
+
}
|
| 881 |
+
"""
|
| 882 |
+
|
| 883 |
+
title = "# Depth Anything V2 Video"
|
| 884 |
+
description = """**Depth Anything V2** on full video files.
|
| 885 |
+
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
#transform = Compose([
|
| 889 |
+
# Resize(
|
| 890 |
+
# width=518,
|
| 891 |
+
# height=518,
|
| 892 |
+
# resize_target=False,
|
| 893 |
+
# keep_aspect_ratio=True,
|
| 894 |
+
# ensure_multiple_of=14,
|
| 895 |
+
# resize_method='lower_bound',
|
| 896 |
+
# image_interpolation_method=cv2.INTER_CUBIC,
|
| 897 |
+
# ),
|
| 898 |
+
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 899 |
+
# PrepareForNet(),
|
| 900 |
+
#])
|
| 901 |
+
|
| 902 |
+
# @torch.no_grad()
|
| 903 |
+
# def predict_depth(model, image):
|
| 904 |
+
# return model(image)
|
| 905 |
+
|
| 906 |
+
with gr.Blocks(css=css, js=js) as demo:
|
| 907 |
+
gr.Markdown(title)
|
| 908 |
+
gr.Markdown(description)
|
| 909 |
+
gr.Markdown("### Video Depth Prediction demo")
|
| 910 |
+
|
| 911 |
+
with gr.Row():
|
| 912 |
+
with gr.Column():
|
| 913 |
+
input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
|
| 914 |
+
input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
|
| 915 |
+
input_video = gr.Video(label="Input Video", format="mp4")
|
| 916 |
+
input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
|
| 917 |
+
submit = gr.Button("Submit")
|
| 918 |
+
output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
|
| 919 |
+
output_switch = gr.Checkbox(label="Show depths")
|
| 920 |
+
with gr.Accordion(label="Depths", open=False):
|
| 921 |
+
output_depth = gr.Files(label="Depth files", interactive=False)
|
| 922 |
+
output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
|
| 923 |
+
optimize_switch = gr.Checkbox(label="Optimize")
|
| 924 |
+
bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
|
| 925 |
+
optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
|
| 926 |
+
output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
|
| 927 |
+
with gr.Row():
|
| 928 |
+
selector = gr.HTML(value="""
|
| 929 |
+
<a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
|
| 930 |
+
this.style.fontWeight=\"bold\";
|
| 931 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
|
| 932 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
|
| 933 |
+
|
| 934 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
|
| 935 |
+
var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
|
| 936 |
+
var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
|
| 937 |
+
|
| 938 |
+
var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
|
| 939 |
+
if (p != \"\") { p += \", \"; }
|
| 940 |
+
p += \"[\" + x + \", \" + y + \"]\";
|
| 941 |
+
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
|
| 942 |
+
|
| 943 |
+
var evt = document.createEvent(\"Event\");
|
| 944 |
+
evt.initEvent(\"input\", true, false);
|
| 945 |
+
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
|
| 946 |
+
}
|
| 947 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
|
| 948 |
+
|
| 949 |
+
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
|
| 950 |
+
|
| 951 |
+
}
|
| 952 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
|
| 953 |
+
|
| 954 |
+
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
|
| 955 |
+
|
| 956 |
+
}
|
| 957 |
+
} else {
|
| 958 |
+
this.style.fontWeight=\"normal\";
|
| 959 |
+
document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
|
| 960 |
+
|
| 961 |
+
}' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
|
| 962 |
+
|
| 963 |
+
document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
|
| 964 |
+
|
| 965 |
+
' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
|
| 966 |
+
apply = gr.Button("Apply", size='sm')
|
| 967 |
+
reset = gr.Button("Reset", size='sm')
|
| 968 |
+
with gr.Accordion(label="Edge", open=False):
|
| 969 |
+
levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
|
| 970 |
+
tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
|
| 971 |
+
bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
|
| 972 |
+
mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
|
| 973 |
+
mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
|
| 974 |
+
apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
|
| 975 |
+
reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])
|
| 976 |
+
|
| 977 |
+
normals_out = gr.Image(label="Normal map", interactive=False)
|
| 978 |
+
format_normals = gr.Radio(choices=["directx", "opengl"])
|
| 979 |
+
find_normals = gr.Button("Find normals")
|
| 980 |
+
find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])
|
| 981 |
+
|
| 982 |
+
with gr.Column():
|
| 983 |
+
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
|
| 984 |
+
processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
|
| 985 |
+
processed_zip = gr.File(label="Output Archive", interactive=False)
|
| 986 |
+
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
|
| 987 |
+
chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
|
| 988 |
+
<style>
|
| 989 |
+
body {
|
| 990 |
+
user-select: none;
|
| 991 |
+
}
|
| 992 |
+
#chart hr {
|
| 993 |
+
width: 1px;
|
| 994 |
+
height: 1px;
|
| 995 |
+
clear: none;
|
| 996 |
+
border: 0;
|
| 997 |
+
padding:0;
|
| 998 |
+
display: inline-block;
|
| 999 |
+
position: relative;
|
| 1000 |
+
vertical-align: top;
|
| 1001 |
+
margin-top:32px;
|
| 1002 |
+
}
|
| 1003 |
+
#chart {
|
| 1004 |
+
padding:0;
|
| 1005 |
+
margin:0;
|
| 1006 |
+
width:256px;
|
| 1007 |
+
height:64px;
|
| 1008 |
+
background-color:#808080;
|
| 1009 |
+
touch-action: none;
|
| 1010 |
+
}
|
| 1011 |
+
</style>
|
| 1012 |
+
""")
|
| 1013 |
+
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
|
| 1014 |
+
var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
|
| 1015 |
+
for (var i=0; i<256; i++) {
|
| 1016 |
+
var avg = 0;
|
| 1017 |
+
var div = this.value;
|
| 1018 |
+
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
|
| 1019 |
+
if (pts_a[j]) {
|
| 1020 |
+
avg += parseInt(pts_a[j]);
|
| 1021 |
+
} else if (div > 1) {
|
| 1022 |
+
div--;
|
| 1023 |
+
}
|
| 1024 |
+
}
|
| 1025 |
+
pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
|
| 1026 |
+
|
| 1027 |
+
document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
|
| 1028 |
+
document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
|
| 1029 |
+
}
|
| 1030 |
+
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
|
| 1031 |
+
|
| 1032 |
+
var evt = document.createEvent(\"Event\");
|
| 1033 |
+
evt.initEvent(\"input\", true, false);
|
| 1034 |
+
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
|
| 1035 |
+
' oninput='
|
| 1036 |
+
this.parentNode.childNodes[2].innerText = this.value;
|
| 1037 |
+
' onchange='this.click();'/><span>1</span>""")
|
| 1038 |
+
with gr.Accordion(label="Blur levels", open=False):
|
| 1039 |
+
blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value="1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1")
|
| 1040 |
+
with gr.Accordion(label="Locations", open=False):
|
| 1041 |
+
selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
|
| 1042 |
+
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
|
| 1043 |
+
example_coords = """[
|
| 1044 |
+
{"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
|
| 1045 |
+
{"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
|
| 1046 |
+
{"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
|
| 1047 |
+
{"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
|
| 1048 |
+
{"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
|
| 1049 |
+
]"""
|
| 1050 |
+
coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
|
| 1051 |
+
mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
|
| 1052 |
+
|
| 1053 |
+
result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
|
| 1054 |
+
html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
|
| 1055 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 1056 |
+
var evt = document.createEvent(\"Event\");
|
| 1057 |
+
evt.initEvent(\"click\", true, false);
|
| 1058 |
+
document.getElementById(\"reset_cam\").dispatchEvent(evt);
|
| 1059 |
+
}
|
| 1060 |
+
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
|
| 1061 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
|
| 1062 |
+
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
|
| 1063 |
+
|
| 1064 |
+
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
|
| 1065 |
+
'/><span>0.8</span>""")
|
| 1066 |
+
camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
|
| 1067 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 1068 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
|
| 1069 |
+
screenshot: true,
|
| 1070 |
+
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
|
| 1071 |
+
}
|
| 1072 |
+
}
|
| 1073 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
|
| 1074 |
+
BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
|
| 1075 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
|
| 1076 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
|
| 1077 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
|
| 1078 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
|
| 1079 |
+
|
| 1080 |
+
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
|
| 1081 |
+
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
|
| 1082 |
+
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
|
| 1083 |
+
'>reset camera</a>""")
|
| 1084 |
+
contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
|
| 1085 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 1086 |
+
var evt = document.createEvent(\"Event\");
|
| 1087 |
+
evt.initEvent(\"click\", true, false);
|
| 1088 |
+
document.getElementById(\"reset_cam\").dispatchEvent(evt);
|
| 1089 |
+
}
|
| 1090 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
|
| 1091 |
+
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
|
| 1092 |
+
'/><span>1.0</span>""")
|
| 1093 |
+
exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
|
| 1094 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 1095 |
+
var evt = document.createEvent(\"Event\");
|
| 1096 |
+
evt.initEvent(\"click\", true, false);
|
| 1097 |
+
document.getElementById(\"reset_cam\").dispatchEvent(evt);
|
| 1098 |
+
}
|
| 1099 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
|
| 1100 |
+
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
|
| 1101 |
+
'/><span>1.0</span>""")
|
| 1102 |
+
canvas = gr.HTML(value="""<a href='#' onclick='
|
| 1103 |
+
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
|
| 1104 |
+
var evt = document.createEvent(\"Event\");
|
| 1105 |
+
evt.initEvent(\"click\", true, false);
|
| 1106 |
+
document.getElementById(\"reset_cam\").dispatchEvent(evt);
|
| 1107 |
+
}
|
| 1108 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;
|
| 1109 |
+
|
| 1110 |
+
BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
|
| 1111 |
+
if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
|
| 1112 |
+
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
|
| 1113 |
+
try {
|
| 1114 |
+
BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera,
|
| 1115 |
+
{ precision: 1.0 }, (durl) => {
|
| 1116 |
+
var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
|
| 1117 |
+
var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
|
| 1118 |
+
<defs>
|
| 1119 |
+
<filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
|
| 1120 |
+
<feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
|
| 1121 |
+
</filter>
|
| 1122 |
+
</defs>
|
| 1123 |
+
<image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
|
| 1124 |
+
</svg>`;
|
| 1125 |
+
document.getElementById(\"cnv_out\").width = cnvs.width;
|
| 1126 |
+
document.getElementById(\"cnv_out\").height = cnvs.height;
|
| 1127 |
+
document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);
|
| 1128 |
+
}
|
| 1129 |
+
);
|
| 1130 |
+
} catch(e) { alert(e); }
|
| 1131 |
+
// https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
|
| 1132 |
+
}
|
| 1133 |
+
});
|
| 1134 |
+
'/>snapshot</a><br/><img src='' id='img_out' onload='
|
| 1135 |
+
var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
|
| 1136 |
+
ctxt.drawImage(this, 0, 0);
|
| 1137 |
+
'/><br/>
|
| 1138 |
+
<canvas id='cnv_out'/>""")
|
| 1139 |
+
load_all = gr.Checkbox(label="Load all")
|
| 1140 |
+
render = gr.Button("Render")
|
| 1141 |
+
input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
|
| 1142 |
+
|
| 1143 |
+
def on_submit(uploaded_video,model_type,coordinates):
|
| 1144 |
+
global locations
|
| 1145 |
+
locations = []
|
| 1146 |
+
avg = [0, 0]
|
| 1147 |
+
|
| 1148 |
+
locations = json.loads(coordinates)
|
| 1149 |
+
for k, location in enumerate(locations):
|
| 1150 |
+
if "tiles" in locations[k]:
|
| 1151 |
+
locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
|
| 1152 |
+
locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
|
| 1153 |
+
else:
|
| 1154 |
+
locations[k]["heading"] = 0
|
| 1155 |
+
locations[k]["pitch"] = 0
|
| 1156 |
+
|
| 1157 |
+
if "location" in locations[k]:
|
| 1158 |
+
locations[k] = locations[k]["location"]["latLng"]
|
| 1159 |
+
avg[0] = avg[0] + locations[k]["lat"]
|
| 1160 |
+
avg[1] = avg[1] + locations[k]["lng"]
|
| 1161 |
+
else:
|
| 1162 |
+
locations[k]["lat"] = 0
|
| 1163 |
+
locations[k]["lng"] = 0
|
| 1164 |
+
|
| 1165 |
+
if len(locations) > 0:
|
| 1166 |
+
avg[0] = avg[0] / len(locations)
|
| 1167 |
+
avg[1] = avg[1] / len(locations)
|
| 1168 |
+
|
| 1169 |
+
for k, location in enumerate(locations):
|
| 1170 |
+
lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
|
| 1171 |
+
lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
|
| 1172 |
+
locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
|
| 1173 |
+
locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
|
| 1174 |
+
print(locations)
|
| 1175 |
+
|
| 1176 |
+
# Process the video and get the path of the output video
|
| 1177 |
+
output_video_path = make_video(uploaded_video,encoder=model_type)
|
| 1178 |
+
|
| 1179 |
+
return output_video_path + (json.dumps(locations),)
|
| 1180 |
+
|
| 1181 |
+
submit.click(on_submit, inputs=[input_video, model_type, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
|
| 1182 |
+
render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
|
| 1183 |
+
render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])
|
| 1184 |
+
|
| 1185 |
+
example_files = [["./examples/streetview.mp4", "vits", example_coords]]
|
| 1186 |
+
examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
if __name__ == '__main__':
|
| 1190 |
+
demo.queue().launch()
|