""" The implementation of the SVM model for anomaly detection. Authors: LogPAI Team Reference: [1] Yinglung Liang, Yanyong Zhang, Hui Xiong, Ramendra Sahoo. Failure Prediction in IBM BlueGene/L Event Logs. IEEE International Conference on Data Mining (ICDM), 2007. """ import numpy as np from sklearn import svm from ..utils import metrics class SVM(object): def __init__(self, penalty='l1', tol=0.1, C=1, dual=False, class_weight=None, max_iter=100): """ The Invariants Mining model for anomaly detection Arguments --------- See SVM API: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html Attributes ---------- classifier: object, the classifier for anomaly detection """ self.classifier = svm.LinearSVC(penalty=penalty, tol=tol, C=C, dual=dual, class_weight=class_weight, max_iter=max_iter) def fit(self, X, y): """ Arguments --------- X: ndarray, the event count matrix of shape num_instances-by-num_events """ print('====== Model summary ======') self.classifier.fit(X, y) def predict(self, X): """ Predict anomalies with mined invariants Arguments --------- X: the input event count matrix Returns ------- y_pred: ndarray, the predicted label vector of shape (num_instances,) """ y_pred = self.classifier.predict(X) return y_pred def evaluate(self, X, y_true): print('====== Evaluation summary ======') y_pred = self.predict(X) precision, recall, f1 = metrics(y_pred, y_true) print('Precision: {:.3f}, recall: {:.3f}, F1-measure: {:.3f}\n'.format(precision, recall, f1)) return precision, recall, f1