Log-Decoder / loglizer /preprocessing.py
jpcabangon
init logdecoder app files
9c323ee
"""
The interface for data preprocessing.
Authors:
LogPAI Team
"""
import pandas as pd
import os
import numpy as np
import re
from collections import Counter
from scipy.special import expit
from itertools import compress
class FeatureExtractor(object):
def __init__(self):
self.idf_vec = None
self.mean_vec = None
self.events = None
self.term_weighting = None
self.normalization = None
self.oov = None
def fit_transform(self, X_seq, term_weighting=None, normalization=None, oov=False, min_count=1):
""" Fit and transform the data matrix
Arguments
---------
X_seq: ndarray, log sequences matrix
term_weighting: None or `tf-idf`
normalization: None or `zero-mean`
oov: bool, whether to use OOV event
min_count: int, the minimal occurrence of events (default 0), only valid when oov=True.
Returns
-------
X_new: The transformed data matrix
"""
print('====== Transformed train data summary ======')
self.term_weighting = term_weighting
self.normalization = normalization
self.oov = oov
X_counts = []
for i in range(X_seq.shape[0]):
event_counts = Counter(X_seq[i])
X_counts.append(event_counts)
X_df = pd.DataFrame(X_counts)
X_df = X_df.fillna(0)
self.events = X_df.columns
X = X_df.values
if self.oov:
oov_vec = np.zeros(X.shape[0])
if min_count > 1:
idx = np.sum(X > 0, axis=0) >= min_count
oov_vec = np.sum(X[:, ~idx] > 0, axis=1)
X = X[:, idx]
self.events = np.array(X_df.columns)[idx].tolist()
X = np.hstack([X, oov_vec.reshape(X.shape[0], 1)])
num_instance, num_event = X.shape
if self.term_weighting == 'tf-idf':
df_vec = np.sum(X > 0, axis=0)
self.idf_vec = np.log(num_instance / (df_vec + 1e-8))
idf_matrix = X * np.tile(self.idf_vec, (num_instance, 1))
X = idf_matrix
if self.normalization == 'zero-mean':
mean_vec = X.mean(axis=0)
self.mean_vec = mean_vec.reshape(1, num_event)
X = X - np.tile(self.mean_vec, (num_instance, 1))
elif self.normalization == 'sigmoid':
X[X != 0] = expit(X[X != 0])
X_new = X
print('Train data shape: {}-by-{}\n'.format(X_new.shape[0], X_new.shape[1]))
return X_new
def transform(self, X_seq):
""" Transform the data matrix with trained parameters
Arguments
---------
X: log sequences matrix
term_weighting: None or `tf-idf`
Returns
-------
X_new: The transformed data matrix
"""
print('====== Transformed test data summary ======')
X_counts = []
for i in range(X_seq.shape[0]):
event_counts = Counter(X_seq[i])
X_counts.append(event_counts)
X_df = pd.DataFrame(X_counts)
X_df = X_df.fillna(0)
empty_events = set(self.events) - set(X_df.columns)
for event in empty_events:
X_df[event] = [0] * len(X_df)
X = X_df[self.events].values
if self.oov:
oov_vec = np.sum(X_df[X_df.columns.difference(self.events)].values > 0, axis=1)
X = np.hstack([X, oov_vec.reshape(X.shape[0], 1)])
num_instance, num_event = X.shape
if self.term_weighting == 'tf-idf':
idf_matrix = X * np.tile(self.idf_vec, (num_instance, 1))
X = idf_matrix
if self.normalization == 'zero-mean':
X = X - np.tile(self.mean_vec, (num_instance, 1))
elif self.normalization == 'sigmoid':
X[X != 0] = expit(X[X != 0])
X_new = X
print('Test data shape: {}-by-{}\n'.format(X_new.shape[0], X_new.shape[1]))
return X_new, self.events