Spaces:
Runtime error
Runtime error
""" | |
The implementation of the decision tree model for anomaly detection. | |
Authors: | |
LogPAI Team | |
Reference: | |
[1] Mike Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, Eric Brewer. | |
Failure Diagnosis Using Decision Trees. IEEE International Conference | |
on Autonomic Computing (ICAC), 2004. | |
""" | |
import numpy as np | |
from sklearn import tree | |
from ..utils import metrics | |
class DecisionTree(object): | |
def __init__(self, criterion='gini', max_depth=None, max_features=None, class_weight=None): | |
""" The Invariants Mining model for anomaly detection | |
Arguments | |
--------- | |
See DecisionTreeClassifier API: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html | |
Attributes | |
---------- | |
classifier: object, the classifier for anomaly detection | |
""" | |
self.classifier = tree.DecisionTreeClassifier(criterion=criterion, max_depth=max_depth, | |
max_features=max_features, class_weight=class_weight) | |
def fit(self, X, y): | |
""" | |
Arguments | |
--------- | |
X: ndarray, the event count matrix of shape num_instances-by-num_events | |
""" | |
print('====== Model summary ======') | |
self.classifier.fit(X, y) | |
def predict(self, X): | |
""" Predict anomalies with mined invariants | |
Arguments | |
--------- | |
X: the input event count matrix | |
Returns | |
------- | |
y_pred: ndarray, the predicted label vector of shape (num_instances,) | |
""" | |
y_pred = self.classifier.predict(X) | |
return y_pred | |
def predict_proba(self, X): | |
""" Predict anomalies with mined invariants | |
Arguments | |
--------- | |
X: the input event count matrix | |
Returns | |
------- | |
y_pred: ndarray, the predicted label vector of shape (num_instances,) | |
""" | |
y_pred = self.classifier.predict_proba(X) | |
return y_pred | |
def evaluate(self, X, y_true): | |
print('====== Evaluation summary ======') | |
y_pred = self.predict(X) | |
precision, recall, f1 = metrics(y_pred, y_true) | |
print('Precision: {:.3f}, recall: {:.3f}, F1-measure: {:.3f}\n'.format(precision, recall, f1)) | |
return precision, recall, f1 | |