File size: 4,038 Bytes
9c323ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
The interface for data preprocessing.

Authors:
    LogPAI Team

"""


import pandas as pd
import os
import numpy as np
import re
from collections import Counter
from scipy.special import expit
from itertools import compress



class FeatureExtractor(object):

    def __init__(self):
        self.idf_vec = None
        self.mean_vec = None
        self.events = None
        self.term_weighting = None
        self.normalization = None
        self.oov = None

    def fit_transform(self, X_seq, term_weighting=None, normalization=None, oov=False, min_count=1):
        """ Fit and transform the data matrix

        Arguments
        ---------
            X_seq: ndarray, log sequences matrix
            term_weighting: None or `tf-idf`
            normalization: None or `zero-mean`
            oov: bool, whether to use OOV event
            min_count: int, the minimal occurrence of events (default 0), only valid when oov=True.

        Returns
        -------
            X_new: The transformed data matrix
        """
        print('====== Transformed train data summary ======')
        self.term_weighting = term_weighting
        self.normalization = normalization
        self.oov = oov

        X_counts = []
        for i in range(X_seq.shape[0]):
            event_counts = Counter(X_seq[i])
            X_counts.append(event_counts)
        X_df = pd.DataFrame(X_counts)
        X_df = X_df.fillna(0)
        self.events = X_df.columns
        X = X_df.values
        if self.oov:
            oov_vec = np.zeros(X.shape[0])
            if min_count > 1:
                idx = np.sum(X > 0, axis=0) >= min_count
                oov_vec = np.sum(X[:, ~idx] > 0, axis=1)
                X = X[:, idx]
                self.events = np.array(X_df.columns)[idx].tolist()
            X = np.hstack([X, oov_vec.reshape(X.shape[0], 1)])
        
        num_instance, num_event = X.shape
        if self.term_weighting == 'tf-idf':
            df_vec = np.sum(X > 0, axis=0)
            self.idf_vec = np.log(num_instance / (df_vec + 1e-8))
            idf_matrix = X * np.tile(self.idf_vec, (num_instance, 1)) 
            X = idf_matrix
        if self.normalization == 'zero-mean':
            mean_vec = X.mean(axis=0)
            self.mean_vec = mean_vec.reshape(1, num_event)
            X = X - np.tile(self.mean_vec, (num_instance, 1))
        elif self.normalization == 'sigmoid':
            X[X != 0] = expit(X[X != 0])
        X_new = X
        
        print('Train data shape: {}-by-{}\n'.format(X_new.shape[0], X_new.shape[1])) 
        return X_new

    def transform(self, X_seq):
        """ Transform the data matrix with trained parameters

        Arguments
        ---------
            X: log sequences matrix
            term_weighting: None or `tf-idf`

        Returns
        -------
            X_new: The transformed data matrix
        """
        print('====== Transformed test data summary ======')
        X_counts = []
        for i in range(X_seq.shape[0]):
            event_counts = Counter(X_seq[i])
            X_counts.append(event_counts)
        X_df = pd.DataFrame(X_counts)
        X_df = X_df.fillna(0)
        empty_events = set(self.events) - set(X_df.columns)
        for event in empty_events:
            X_df[event] = [0] * len(X_df)
        X = X_df[self.events].values
        if self.oov:
            oov_vec = np.sum(X_df[X_df.columns.difference(self.events)].values > 0, axis=1)
            X = np.hstack([X, oov_vec.reshape(X.shape[0], 1)])
        
        num_instance, num_event = X.shape
        if self.term_weighting == 'tf-idf':
            idf_matrix = X * np.tile(self.idf_vec, (num_instance, 1)) 
            X = idf_matrix
        if self.normalization == 'zero-mean':
            X = X - np.tile(self.mean_vec, (num_instance, 1))
        elif self.normalization == 'sigmoid':
            X[X != 0] = expit(X[X != 0])
        X_new = X

        print('Test data shape: {}-by-{}\n'.format(X_new.shape[0], X_new.shape[1])) 

        return X_new, self.events