Spaces:
Runtime error
Runtime error
Added Docker support for Hugging Face Spaces
Browse files- Dockerfile +22 -0
- EETh1.csv +0 -0
- app.py +528 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use an official Python runtime as a parent image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set environment variables
|
| 5 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 6 |
+
ENV PYTHONUNBUFFERED=1
|
| 7 |
+
|
| 8 |
+
# Set the working directory
|
| 9 |
+
WORKDIR /app
|
| 10 |
+
|
| 11 |
+
# Copy the requirements file and install dependencies
|
| 12 |
+
COPY requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
+
|
| 15 |
+
# Copy the rest of the application code
|
| 16 |
+
COPY . /app
|
| 17 |
+
|
| 18 |
+
# Expose the port that Streamlit uses
|
| 19 |
+
EXPOSE 8501
|
| 20 |
+
|
| 21 |
+
# Command to run the Streamlit app
|
| 22 |
+
CMD ["streamlit", "run", "app.py", "--server.enableCORS", "false"]
|
EETh1.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
+
import tempfile
|
| 4 |
+
import warnings
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
|
| 10 |
+
from torch.optim import AdamW
|
| 11 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
| 12 |
+
from transformers import (
|
| 13 |
+
EarlyStoppingCallback,
|
| 14 |
+
Trainer,
|
| 15 |
+
TrainingArguments,
|
| 16 |
+
set_seed,
|
| 17 |
+
)
|
| 18 |
+
from transformers.integrations import INTEGRATION_TO_CALLBACK
|
| 19 |
+
|
| 20 |
+
from tsfm_public import (
|
| 21 |
+
TimeSeriesPreprocessor,
|
| 22 |
+
TrackingCallback,
|
| 23 |
+
count_parameters,
|
| 24 |
+
get_datasets,
|
| 25 |
+
)
|
| 26 |
+
from tsfm_public.toolkit.get_model import get_model
|
| 27 |
+
from tsfm_public.toolkit.lr_finder import optimal_lr_finder
|
| 28 |
+
from tsfm_public.toolkit.visualization import plot_predictions
|
| 29 |
+
|
| 30 |
+
# For M4 Hourly Example
|
| 31 |
+
from tsfm_public.models.tinytimemixer import TinyTimeMixerForPrediction
|
| 32 |
+
|
| 33 |
+
# Suppress warnings and set a reproducible seed
|
| 34 |
+
warnings.filterwarnings("ignore")
|
| 35 |
+
SEED = 42
|
| 36 |
+
set_seed(SEED)
|
| 37 |
+
|
| 38 |
+
# Default model parameters and output directory
|
| 39 |
+
TTM_MODEL_PATH = "ibm-granite/granite-timeseries-ttm-r2"
|
| 40 |
+
DEFAULT_CONTEXT_LENGTH = 512
|
| 41 |
+
DEFAULT_PREDICTION_LENGTH = 96
|
| 42 |
+
OUT_DIR = "dashboard_outputs"
|
| 43 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# --------------------------
|
| 47 |
+
# Helper: Interactive Plot
|
| 48 |
+
def interactive_plot(actual, forecast, title="Forecast vs Actual"):
|
| 49 |
+
df = pd.DataFrame(
|
| 50 |
+
{"Time": range(len(actual)), "Actual": actual, "Forecast": forecast}
|
| 51 |
+
)
|
| 52 |
+
fig = px.line(df, x="Time", y=["Actual", "Forecast"], title=title)
|
| 53 |
+
return fig
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# --------------------------
|
| 57 |
+
# Mode 1: Zero-shot Evaluation
|
| 58 |
+
def run_zero_shot_forecasting(
|
| 59 |
+
data,
|
| 60 |
+
context_length,
|
| 61 |
+
prediction_length,
|
| 62 |
+
batch_size,
|
| 63 |
+
selected_target_columns,
|
| 64 |
+
selected_conditional_columns,
|
| 65 |
+
rolling_forecast_extension,
|
| 66 |
+
selected_forecast_index,
|
| 67 |
+
):
|
| 68 |
+
st.write("### Preparing Data for Forecasting")
|
| 69 |
+
timestamp_column = "date"
|
| 70 |
+
id_columns = [] # Modify if needed.
|
| 71 |
+
# Use selected target columns; default to all columns (except "date") if not provided.
|
| 72 |
+
if not selected_target_columns:
|
| 73 |
+
target_columns = [col for col in data.columns if col != timestamp_column]
|
| 74 |
+
else:
|
| 75 |
+
target_columns = selected_target_columns
|
| 76 |
+
|
| 77 |
+
# Incorporate exogenous/control columns.
|
| 78 |
+
conditional_columns = selected_conditional_columns
|
| 79 |
+
|
| 80 |
+
# Define column specifiers (if your preprocessor supports static columns, add here)
|
| 81 |
+
column_specifiers = {
|
| 82 |
+
"timestamp_column": timestamp_column,
|
| 83 |
+
"id_columns": id_columns,
|
| 84 |
+
"target_columns": target_columns,
|
| 85 |
+
"control_columns": conditional_columns,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
n = len(data)
|
| 89 |
+
split_config = {
|
| 90 |
+
"train": [0, int(n * 0.7)],
|
| 91 |
+
"valid": [int(n * 0.7), int(n * 0.8)],
|
| 92 |
+
"test": [int(n * 0.8), n],
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
tsp = TimeSeriesPreprocessor(
|
| 96 |
+
**column_specifiers,
|
| 97 |
+
context_length=context_length,
|
| 98 |
+
prediction_length=prediction_length,
|
| 99 |
+
scaling=True,
|
| 100 |
+
encode_categorical=False,
|
| 101 |
+
scaler_type="standard",
|
| 102 |
+
)
|
| 103 |
+
dset_train, dset_valid, dset_test = get_datasets(tsp, data, split_config)
|
| 104 |
+
st.write("Data split into train, validation, and test sets.")
|
| 105 |
+
|
| 106 |
+
st.write("### Loading the Pre-trained TTM Model")
|
| 107 |
+
model = get_model(
|
| 108 |
+
TTM_MODEL_PATH,
|
| 109 |
+
context_length=context_length,
|
| 110 |
+
prediction_length=prediction_length,
|
| 111 |
+
)
|
| 112 |
+
temp_dir = tempfile.mkdtemp()
|
| 113 |
+
training_args = TrainingArguments(
|
| 114 |
+
output_dir=temp_dir,
|
| 115 |
+
per_device_eval_batch_size=batch_size,
|
| 116 |
+
seed=SEED,
|
| 117 |
+
report_to="none",
|
| 118 |
+
)
|
| 119 |
+
trainer = Trainer(model=model, args=training_args)
|
| 120 |
+
|
| 121 |
+
st.write("### Running Zero-shot Evaluation")
|
| 122 |
+
st.info("Evaluating on the test set...")
|
| 123 |
+
eval_output = trainer.evaluate(dset_test)
|
| 124 |
+
st.write("**Zero-shot Evaluation Metrics:**")
|
| 125 |
+
st.json(eval_output)
|
| 126 |
+
|
| 127 |
+
st.write("### Generating Forecast Predictions")
|
| 128 |
+
predictions_dict = trainer.predict(dset_test)
|
| 129 |
+
try:
|
| 130 |
+
predictions_np = predictions_dict.predictions[0]
|
| 131 |
+
except Exception as e:
|
| 132 |
+
st.error("Error extracting predictions: " + str(e))
|
| 133 |
+
return
|
| 134 |
+
st.write("Predictions shape:", predictions_np.shape)
|
| 135 |
+
|
| 136 |
+
if rolling_forecast_extension > 0:
|
| 137 |
+
st.write(
|
| 138 |
+
f"### Rolling Forecast Extension: {rolling_forecast_extension} extra steps"
|
| 139 |
+
)
|
| 140 |
+
st.info("Rolling forecast logic can be implemented here.")
|
| 141 |
+
|
| 142 |
+
# Interactive plot for a selected forecast index.
|
| 143 |
+
idx = selected_forecast_index
|
| 144 |
+
try:
|
| 145 |
+
# This example assumes dset_test[idx] is a dict with a "target" key; adjust as needed.
|
| 146 |
+
actual = (
|
| 147 |
+
dset_test[idx]["target"]
|
| 148 |
+
if isinstance(dset_test[idx], dict)
|
| 149 |
+
else dset_test[idx][0]
|
| 150 |
+
)
|
| 151 |
+
except Exception:
|
| 152 |
+
actual = predictions_np[idx] # Fallback if actual is not available.
|
| 153 |
+
fig = interactive_plot(
|
| 154 |
+
actual, predictions_np[idx], title=f"Forecast vs Actual for index {idx}"
|
| 155 |
+
)
|
| 156 |
+
st.plotly_chart(fig)
|
| 157 |
+
|
| 158 |
+
# Static plots (generated via plot_predictions)
|
| 159 |
+
plot_dir = os.path.join(OUT_DIR, "zero_shot_plots")
|
| 160 |
+
os.makedirs(plot_dir, exist_ok=True)
|
| 161 |
+
try:
|
| 162 |
+
plot_predictions(
|
| 163 |
+
model=trainer.model,
|
| 164 |
+
dset=dset_test,
|
| 165 |
+
plot_dir=plot_dir,
|
| 166 |
+
plot_prefix="test_zeroshot",
|
| 167 |
+
indices=[idx],
|
| 168 |
+
channel=0,
|
| 169 |
+
)
|
| 170 |
+
except Exception as e:
|
| 171 |
+
st.error("Error during static plotting: " + str(e))
|
| 172 |
+
return
|
| 173 |
+
for file in os.listdir(plot_dir):
|
| 174 |
+
if file.endswith(".png"):
|
| 175 |
+
st.image(os.path.join(plot_dir, file), caption=file)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
# --------------------------
|
| 179 |
+
# Mode 2: Channel-Mix Finetuning Example
|
| 180 |
+
def run_channel_mix_finetuning():
|
| 181 |
+
st.write("## Channel-Mix Finetuning Example (Bike Sharing Data)")
|
| 182 |
+
# Load bike sharing dataset
|
| 183 |
+
target_dataset = "bike_sharing"
|
| 184 |
+
DATA_ROOT_PATH = (
|
| 185 |
+
"https://raw.githubusercontent.com/blobibob/bike-sharing-dataset/main/hour.csv"
|
| 186 |
+
)
|
| 187 |
+
timestamp_column = "dteday"
|
| 188 |
+
id_columns = []
|
| 189 |
+
try:
|
| 190 |
+
data = pd.read_csv(DATA_ROOT_PATH, parse_dates=[timestamp_column])
|
| 191 |
+
except Exception as e:
|
| 192 |
+
st.error("Error loading bike sharing dataset: " + str(e))
|
| 193 |
+
return
|
| 194 |
+
data[timestamp_column] = pd.to_datetime(data[timestamp_column])
|
| 195 |
+
# Adjust timestamps (to add hourly information)
|
| 196 |
+
data[timestamp_column] = data[timestamp_column] + pd.to_timedelta(
|
| 197 |
+
data.groupby(data[timestamp_column].dt.date).cumcount(), unit="h"
|
| 198 |
+
)
|
| 199 |
+
st.write("### Bike Sharing Data Preview")
|
| 200 |
+
st.dataframe(data.head())
|
| 201 |
+
|
| 202 |
+
# Define columns: targets and conditional (exogenous) channels
|
| 203 |
+
column_specifiers = {
|
| 204 |
+
"timestamp_column": timestamp_column,
|
| 205 |
+
"id_columns": id_columns,
|
| 206 |
+
"target_columns": ["casual", "registered", "cnt"],
|
| 207 |
+
"conditional_columns": [
|
| 208 |
+
"season",
|
| 209 |
+
"yr",
|
| 210 |
+
"mnth",
|
| 211 |
+
"holiday",
|
| 212 |
+
"weekday",
|
| 213 |
+
"workingday",
|
| 214 |
+
"weathersit",
|
| 215 |
+
"temp",
|
| 216 |
+
"atemp",
|
| 217 |
+
"hum",
|
| 218 |
+
"windspeed",
|
| 219 |
+
],
|
| 220 |
+
}
|
| 221 |
+
n = len(data)
|
| 222 |
+
split_config = {
|
| 223 |
+
"train": [0, int(n * 0.5)],
|
| 224 |
+
"valid": [int(n * 0.5), int(n * 0.75)],
|
| 225 |
+
"test": [int(n * 0.75), n],
|
| 226 |
+
}
|
| 227 |
+
context_length = 512
|
| 228 |
+
forecast_length = 96
|
| 229 |
+
|
| 230 |
+
tsp = TimeSeriesPreprocessor(
|
| 231 |
+
**column_specifiers,
|
| 232 |
+
context_length=context_length,
|
| 233 |
+
prediction_length=forecast_length,
|
| 234 |
+
scaling=True,
|
| 235 |
+
encode_categorical=False,
|
| 236 |
+
scaler_type="standard",
|
| 237 |
+
)
|
| 238 |
+
train_dataset, valid_dataset, test_dataset = get_datasets(tsp, data, split_config)
|
| 239 |
+
st.write("Data split completed.")
|
| 240 |
+
|
| 241 |
+
# For channel-mix finetuning, we use TTM-R1 (as per provided script)
|
| 242 |
+
TTM_MODEL_PATH_CM = "ibm-granite/granite-timeseries-ttm-r1"
|
| 243 |
+
finetune_forecast_model = get_model(
|
| 244 |
+
TTM_MODEL_PATH_CM,
|
| 245 |
+
context_length=context_length,
|
| 246 |
+
prediction_length=forecast_length,
|
| 247 |
+
num_input_channels=tsp.num_input_channels,
|
| 248 |
+
decoder_mode="mix_channel",
|
| 249 |
+
prediction_channel_indices=tsp.prediction_channel_indices,
|
| 250 |
+
)
|
| 251 |
+
st.write(
|
| 252 |
+
"Number of params before freezing backbone:",
|
| 253 |
+
count_parameters(finetune_forecast_model),
|
| 254 |
+
)
|
| 255 |
+
for param in finetune_forecast_model.backbone.parameters():
|
| 256 |
+
param.requires_grad = False
|
| 257 |
+
st.write(
|
| 258 |
+
"Number of params after freezing backbone:",
|
| 259 |
+
count_parameters(finetune_forecast_model),
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
num_epochs = 50
|
| 263 |
+
batch_size = 64
|
| 264 |
+
learning_rate = 0.001
|
| 265 |
+
optimizer = AdamW(finetune_forecast_model.parameters(), lr=learning_rate)
|
| 266 |
+
scheduler = OneCycleLR(
|
| 267 |
+
optimizer,
|
| 268 |
+
learning_rate,
|
| 269 |
+
epochs=num_epochs,
|
| 270 |
+
steps_per_epoch=math.ceil(len(train_dataset) / batch_size),
|
| 271 |
+
)
|
| 272 |
+
out_dir = os.path.join(OUT_DIR, target_dataset)
|
| 273 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 274 |
+
finetune_args = TrainingArguments(
|
| 275 |
+
output_dir=os.path.join(out_dir, "output"),
|
| 276 |
+
overwrite_output_dir=True,
|
| 277 |
+
learning_rate=learning_rate,
|
| 278 |
+
num_train_epochs=num_epochs,
|
| 279 |
+
do_eval=True,
|
| 280 |
+
evaluation_strategy="epoch",
|
| 281 |
+
per_device_train_batch_size=batch_size,
|
| 282 |
+
per_device_eval_batch_size=batch_size,
|
| 283 |
+
dataloader_num_workers=8,
|
| 284 |
+
report_to="none",
|
| 285 |
+
save_strategy="epoch",
|
| 286 |
+
logging_strategy="epoch",
|
| 287 |
+
save_total_limit=1,
|
| 288 |
+
logging_dir=os.path.join(out_dir, "logs"),
|
| 289 |
+
load_best_model_at_end=True,
|
| 290 |
+
metric_for_best_model="eval_loss",
|
| 291 |
+
greater_is_better=False,
|
| 292 |
+
seed=SEED,
|
| 293 |
+
)
|
| 294 |
+
early_stopping_callback = EarlyStoppingCallback(
|
| 295 |
+
early_stopping_patience=10,
|
| 296 |
+
early_stopping_threshold=1e-5,
|
| 297 |
+
)
|
| 298 |
+
tracking_callback = TrackingCallback()
|
| 299 |
+
finetune_trainer = Trainer(
|
| 300 |
+
model=finetune_forecast_model,
|
| 301 |
+
args=finetune_args,
|
| 302 |
+
train_dataset=train_dataset,
|
| 303 |
+
eval_dataset=valid_dataset,
|
| 304 |
+
callbacks=[early_stopping_callback, tracking_callback],
|
| 305 |
+
optimizers=(optimizer, scheduler),
|
| 306 |
+
)
|
| 307 |
+
finetune_trainer.remove_callback(INTEGRATION_TO_CALLBACK["codecarbon"])
|
| 308 |
+
st.write("Starting channel-mix finetuning...")
|
| 309 |
+
finetune_trainer.train()
|
| 310 |
+
st.write("Evaluating finetuned model on test set...")
|
| 311 |
+
eval_output = finetune_trainer.evaluate(test_dataset)
|
| 312 |
+
st.write("Few-shot (channel-mix) evaluation metrics:")
|
| 313 |
+
st.json(eval_output)
|
| 314 |
+
# Plot predictions
|
| 315 |
+
plot_dir = os.path.join(out_dir, "channel_mix_plots")
|
| 316 |
+
os.makedirs(plot_dir, exist_ok=True)
|
| 317 |
+
try:
|
| 318 |
+
plot_predictions(
|
| 319 |
+
model=finetune_trainer.model,
|
| 320 |
+
dset=test_dataset,
|
| 321 |
+
plot_dir=plot_dir,
|
| 322 |
+
plot_prefix="test_channel_mix",
|
| 323 |
+
indices=[0],
|
| 324 |
+
channel=0,
|
| 325 |
+
)
|
| 326 |
+
except Exception as e:
|
| 327 |
+
st.error("Error plotting channel mix predictions: " + str(e))
|
| 328 |
+
return
|
| 329 |
+
for file in os.listdir(plot_dir):
|
| 330 |
+
if file.endswith(".png"):
|
| 331 |
+
st.image(os.path.join(plot_dir, file), caption=file)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# --------------------------
|
| 335 |
+
# Mode 3: M4 Hourly Example
|
| 336 |
+
def run_m4_hourly_example():
|
| 337 |
+
st.write("## M4 Hourly Example")
|
| 338 |
+
st.info("This example reproduces a simplified version of the M4 hourly evaluation.")
|
| 339 |
+
# For demonstration, we attempt to load an M4 hourly dataset from a URL.
|
| 340 |
+
# (In practice, you would need to download and prepare the dataset.)
|
| 341 |
+
M4_DATASET_URL = "https://raw.githubusercontent.com/IBM/TSFM-public/main/tsfm_public/notebooks/ETTh1.csv" # Placeholder URL
|
| 342 |
+
try:
|
| 343 |
+
m4_data = pd.read_csv(M4_DATASET_URL, parse_dates=["date"])
|
| 344 |
+
except Exception as e:
|
| 345 |
+
st.error("Could not load M4 hourly dataset: " + str(e))
|
| 346 |
+
return
|
| 347 |
+
st.write("### M4 Hourly Data Preview")
|
| 348 |
+
st.dataframe(m4_data.head())
|
| 349 |
+
context_length = 512
|
| 350 |
+
forecast_length = 48 # M4 hourly forecast horizon
|
| 351 |
+
timestamp_column = "date"
|
| 352 |
+
id_columns = []
|
| 353 |
+
target_columns = [col for col in m4_data.columns if col != timestamp_column]
|
| 354 |
+
n = len(m4_data)
|
| 355 |
+
split_config = {
|
| 356 |
+
"train": [0, int(n * 0.7)],
|
| 357 |
+
"valid": [int(n * 0.7), int(n * 0.85)],
|
| 358 |
+
"test": [int(n * 0.85), n],
|
| 359 |
+
}
|
| 360 |
+
column_specifiers = {
|
| 361 |
+
"timestamp_column": timestamp_column,
|
| 362 |
+
"id_columns": id_columns,
|
| 363 |
+
"target_columns": target_columns,
|
| 364 |
+
"control_columns": [],
|
| 365 |
+
}
|
| 366 |
+
tsp = TimeSeriesPreprocessor(
|
| 367 |
+
**column_specifiers,
|
| 368 |
+
context_length=context_length,
|
| 369 |
+
prediction_length=forecast_length,
|
| 370 |
+
scaling=True,
|
| 371 |
+
encode_categorical=False,
|
| 372 |
+
scaler_type="standard",
|
| 373 |
+
)
|
| 374 |
+
dset_train, dset_valid, dset_test = get_datasets(tsp, m4_data, split_config)
|
| 375 |
+
st.write("Data split completed.")
|
| 376 |
+
|
| 377 |
+
# Load model from Hugging Face TTM Model Repository (TTM-V1 for M4)
|
| 378 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 379 |
+
model = TinyTimeMixerForPrediction.from_pretrained(
|
| 380 |
+
"ibm-granite/granite-timeseries-ttm-v1",
|
| 381 |
+
revision="main",
|
| 382 |
+
prediction_filter_length=forecast_length,
|
| 383 |
+
).to(device)
|
| 384 |
+
st.write("Running zero-shot evaluation on M4 hourly data...")
|
| 385 |
+
temp_dir = tempfile.mkdtemp()
|
| 386 |
+
trainer = Trainer(
|
| 387 |
+
model=model,
|
| 388 |
+
args=TrainingArguments(
|
| 389 |
+
output_dir=temp_dir,
|
| 390 |
+
per_device_eval_batch_size=64,
|
| 391 |
+
report_to="none",
|
| 392 |
+
),
|
| 393 |
+
)
|
| 394 |
+
eval_output = trainer.evaluate(dset_test)
|
| 395 |
+
st.write("Zero-shot evaluation metrics on M4 hourly:")
|
| 396 |
+
st.json(eval_output)
|
| 397 |
+
plot_dir = os.path.join(OUT_DIR, "m4_hourly", "zero_shot")
|
| 398 |
+
os.makedirs(plot_dir, exist_ok=True)
|
| 399 |
+
try:
|
| 400 |
+
plot_predictions(
|
| 401 |
+
model=trainer.model,
|
| 402 |
+
dset=dset_test,
|
| 403 |
+
plot_dir=plot_dir,
|
| 404 |
+
plot_prefix="m4_zero_shot",
|
| 405 |
+
indices=[0],
|
| 406 |
+
channel=0,
|
| 407 |
+
)
|
| 408 |
+
except Exception as e:
|
| 409 |
+
st.error("Error plotting M4 zero-shot predictions: " + str(e))
|
| 410 |
+
return
|
| 411 |
+
for file in os.listdir(plot_dir):
|
| 412 |
+
if file.endswith(".png"):
|
| 413 |
+
st.image(os.path.join(plot_dir, file), caption=file)
|
| 414 |
+
st.info("Fine-tuning on M4 hourly data can be added similarly.")
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# --------------------------
|
| 418 |
+
# Main UI
|
| 419 |
+
def main():
|
| 420 |
+
st.title("Interactive Time-Series Forecasting Dashboard")
|
| 421 |
+
st.markdown(
|
| 422 |
+
"""
|
| 423 |
+
This dashboard lets you run advanced forecasting experiments using the Granite-TimeSeries-TTM model.
|
| 424 |
+
Select one of the modes below:
|
| 425 |
+
- **Zero-shot Evaluation**
|
| 426 |
+
- **Channel-Mix Finetuning Example**
|
| 427 |
+
- **M4 Hourly Example**
|
| 428 |
+
"""
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
mode = st.selectbox(
|
| 432 |
+
"Select Evaluation Mode",
|
| 433 |
+
options=[
|
| 434 |
+
"Zero-shot Evaluation",
|
| 435 |
+
"Channel-Mix Finetuning Example",
|
| 436 |
+
"M4 Hourly Example",
|
| 437 |
+
],
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
if mode == "Zero-shot Evaluation":
|
| 441 |
+
# Allow user to choose dataset source
|
| 442 |
+
dataset_source = st.radio(
|
| 443 |
+
"Dataset Source", options=["Default (ETTh1)", "Upload CSV"]
|
| 444 |
+
)
|
| 445 |
+
if dataset_source == "Default (ETTh1)":
|
| 446 |
+
DATASET_PATH = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv"
|
| 447 |
+
try:
|
| 448 |
+
data = pd.read_csv(DATASET_PATH, parse_dates=["date"])
|
| 449 |
+
except Exception as e:
|
| 450 |
+
st.error("Error loading default dataset.")
|
| 451 |
+
return
|
| 452 |
+
st.write("### Default Dataset Preview")
|
| 453 |
+
st.dataframe(data.head())
|
| 454 |
+
selected_target_columns = [
|
| 455 |
+
"HUFL",
|
| 456 |
+
"HULL",
|
| 457 |
+
"MUFL",
|
| 458 |
+
"MULL",
|
| 459 |
+
"LUFL",
|
| 460 |
+
"LULL",
|
| 461 |
+
"OT",
|
| 462 |
+
]
|
| 463 |
+
else:
|
| 464 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
| 465 |
+
if not uploaded_file:
|
| 466 |
+
st.info("Awaiting CSV file upload.")
|
| 467 |
+
return
|
| 468 |
+
data = pd.read_csv(uploaded_file, parse_dates=["date"])
|
| 469 |
+
st.write("### Uploaded Data Preview")
|
| 470 |
+
st.dataframe(data.head())
|
| 471 |
+
available_columns = [col for col in data.columns if col != "date"]
|
| 472 |
+
selected_target_columns = st.multiselect(
|
| 473 |
+
"Select Target Column(s)",
|
| 474 |
+
options=available_columns,
|
| 475 |
+
default=available_columns,
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# Advanced options
|
| 479 |
+
available_exog = [
|
| 480 |
+
col
|
| 481 |
+
for col in data.columns
|
| 482 |
+
if col not in (["date"] + selected_target_columns)
|
| 483 |
+
]
|
| 484 |
+
selected_conditional_columns = st.multiselect(
|
| 485 |
+
"Select Exogenous/Control Columns", options=available_exog, default=[]
|
| 486 |
+
)
|
| 487 |
+
rolling_extension = st.number_input(
|
| 488 |
+
"Rolling Forecast Extension (Extra Steps)", value=0, min_value=0, step=1
|
| 489 |
+
)
|
| 490 |
+
forecast_index = st.slider(
|
| 491 |
+
"Select Forecast Index for Plotting",
|
| 492 |
+
min_value=0,
|
| 493 |
+
max_value=len(data) - 1,
|
| 494 |
+
value=0,
|
| 495 |
+
)
|
| 496 |
+
context_length = st.number_input(
|
| 497 |
+
"Context Length", value=DEFAULT_CONTEXT_LENGTH, step=64
|
| 498 |
+
)
|
| 499 |
+
prediction_length = st.number_input(
|
| 500 |
+
"Prediction Length", value=DEFAULT_PREDICTION_LENGTH, step=1
|
| 501 |
+
)
|
| 502 |
+
batch_size = st.number_input("Batch Size", value=64, step=1)
|
| 503 |
+
if st.button("Run Zero-shot Evaluation"):
|
| 504 |
+
with st.spinner("Running zero-shot evaluation..."):
|
| 505 |
+
run_zero_shot_forecasting(
|
| 506 |
+
data,
|
| 507 |
+
context_length,
|
| 508 |
+
prediction_length,
|
| 509 |
+
batch_size,
|
| 510 |
+
selected_target_columns,
|
| 511 |
+
selected_conditional_columns,
|
| 512 |
+
rolling_extension,
|
| 513 |
+
forecast_index,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
elif mode == "Channel-Mix Finetuning Example":
|
| 517 |
+
if st.button("Run Channel-Mix Finetuning Example"):
|
| 518 |
+
with st.spinner("Running channel-mix finetuning..."):
|
| 519 |
+
run_channel_mix_finetuning()
|
| 520 |
+
|
| 521 |
+
elif mode == "M4 Hourly Example":
|
| 522 |
+
if st.button("Run M4 Hourly Example"):
|
| 523 |
+
with st.spinner("Running M4 hourly example..."):
|
| 524 |
+
run_m4_hourly_example()
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
if __name__ == "__main__":
|
| 528 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
plotly
|
| 6 |
+
tsfm_public @ git+https://github.com/ibm-granite/granite-tsfm.git
|
| 7 |
+
fastapi
|
| 8 |
+
uvicorn[standard]
|