Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,10 +7,11 @@ import numpy as np
|
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import torch
|
10 |
-
from
|
11 |
from datasets import load_dataset
|
12 |
from datetime import datetime
|
13 |
from typing import List, Dict, Any
|
|
|
14 |
from functools import partial
|
15 |
|
16 |
# Configure GPU if available
|
@@ -19,187 +20,325 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
19 |
# Initialize session state
|
20 |
if 'history' not in st.session_state:
|
21 |
st.session_state.history = []
|
22 |
-
|
23 |
if 'feedback' not in st.session_state:
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
-
# Define subset size
|
27 |
-
SUBSET_SIZE =
|
28 |
-
BATCH_SIZE = 8 # Smaller batch size to reduce memory overhead
|
29 |
|
30 |
-
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model_name = "Salesforce/codet5-small"
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
model = AutoModel.from_pretrained(model_name).to(device)
|
48 |
-
model.eval()
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
finally:
|
54 |
-
progress_bar.empty()
|
55 |
-
status_text.empty()
|
56 |
|
57 |
-
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
Ensures the 'text' column is created for embedding precomputation.
|
64 |
-
"""
|
65 |
-
dataset = load_dataset("frankjosh/filtered_dataset")
|
66 |
-
data = pd.DataFrame(dataset['train'])
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
def __len__(self):
|
88 |
-
return len(self.texts)
|
89 |
-
|
90 |
-
def __getitem__(self, idx):
|
91 |
-
return self.tokenizer(
|
92 |
-
self.texts[idx],
|
93 |
-
padding='max_length',
|
94 |
-
truncation=True,
|
95 |
-
max_length=self.max_length,
|
96 |
-
return_tensors="pt"
|
97 |
-
)
|
98 |
-
|
99 |
-
def collate_fn(batch, pad_token_id):
|
100 |
-
max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
|
101 |
-
input_ids, attention_mask = [], []
|
102 |
-
for inputs in batch:
|
103 |
-
input_ids.append(torch.nn.functional.pad(
|
104 |
-
inputs['input_ids'].squeeze(),
|
105 |
-
(0, max_length - inputs['input_ids'].shape[1]),
|
106 |
-
value=pad_token_id
|
107 |
-
))
|
108 |
-
attention_mask.append(torch.nn.functional.pad(
|
109 |
-
inputs['attention_mask'].squeeze(),
|
110 |
-
(0, max_length - inputs['attention_mask'].shape[1]),
|
111 |
-
value=0
|
112 |
-
))
|
113 |
-
return {
|
114 |
-
'input_ids': torch.stack(input_ids),
|
115 |
-
'attention_mask': torch.stack(attention_mask)
|
116 |
-
}
|
117 |
-
|
118 |
-
def generate_embeddings_batch(model, batch, device):
|
119 |
-
with torch.no_grad():
|
120 |
-
batch = {k: v.to(device) for k, v in batch.items()}
|
121 |
-
outputs = model.encoder(**batch)
|
122 |
-
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
123 |
-
|
124 |
-
dataset = TextDataset(data['text'].tolist(), _tokenizer)
|
125 |
dataloader = DataLoader(
|
126 |
-
dataset,
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
)
|
129 |
-
|
130 |
embeddings = []
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
for i, batch in enumerate(dataloader):
|
133 |
-
|
|
|
134 |
embeddings.extend(batch_embeddings)
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
progress_bar.empty()
|
|
|
|
|
|
|
138 |
data['embedding'] = embeddings
|
139 |
return data
|
140 |
|
141 |
@torch.no_grad()
|
142 |
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
|
143 |
-
"""
|
144 |
-
Generate embedding for a user query using the pre-trained model.
|
145 |
-
"""
|
146 |
inputs = tokenizer(
|
147 |
-
query,
|
148 |
-
|
|
|
|
|
|
|
149 |
).to(device)
|
|
|
150 |
outputs = model.encoder(**inputs)
|
151 |
-
|
|
|
152 |
|
153 |
-
def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n=5) -> pd.DataFrame:
|
154 |
-
"""
|
155 |
-
|
156 |
-
"""
|
157 |
-
# Reshape query_embedding to 2D
|
158 |
-
query_embedding = query_embedding.reshape(1, -1)
|
159 |
-
|
160 |
-
# Convert data['embedding'] to a 2D array
|
161 |
-
embeddings = np.vstack(data['embedding'].values)
|
162 |
-
|
163 |
-
# Compute cosine similarity
|
164 |
-
similarities = cosine_similarity(query_embedding, embeddings)[0]
|
165 |
-
|
166 |
-
# Add similarity scores to the DataFrame
|
167 |
data['similarity'] = similarities
|
168 |
-
|
169 |
return data.nlargest(top_n, 'similarity')
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
Display the recommended repositories in the Streamlit app interface.
|
174 |
-
"""
|
175 |
-
st.markdown("### π― Top Recommendations")
|
176 |
-
for idx, row in recommendations.iterrows():
|
177 |
-
st.markdown(f"### {idx + 1}. {row['repo']}")
|
178 |
-
st.metric("Match Score", f"{row['similarity']:.2%}")
|
179 |
-
st.markdown(f"[View Repository]({row['url']})")
|
180 |
|
181 |
-
#
|
182 |
-
st.
|
183 |
-
st.caption("Find repositories based on your project description.")
|
184 |
|
185 |
-
#
|
186 |
-
|
187 |
|
188 |
-
#
|
189 |
-
|
190 |
-
|
191 |
|
192 |
-
#
|
193 |
user_query = st.text_area(
|
194 |
-
"Describe your project:",
|
195 |
-
|
|
|
196 |
)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
else:
|
205 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
from datasets import load_dataset
|
12 |
from datetime import datetime
|
13 |
from typing import List, Dict, Any
|
14 |
+
from torch.utils.data import DataLoader, Dataset
|
15 |
from functools import partial
|
16 |
|
17 |
# Configure GPU if available
|
|
|
20 |
# Initialize session state
|
21 |
if 'history' not in st.session_state:
|
22 |
st.session_state.history = []
|
|
|
23 |
if 'feedback' not in st.session_state:
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
+
# Define subset size
|
27 |
+
SUBSET_SIZE = 1000 # Starting with 500 items for quick testing
|
|
|
28 |
|
29 |
+
class TextDataset(Dataset):
|
30 |
+
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
|
31 |
+
self.texts = texts
|
32 |
+
self.tokenizer = tokenizer
|
33 |
+
self.max_length = max_length
|
34 |
+
|
35 |
+
def __len__(self):
|
36 |
+
return len(self.texts)
|
37 |
+
|
38 |
+
def __getitem__(self, idx):
|
39 |
+
return self.tokenizer(
|
40 |
+
self.texts[idx],
|
41 |
+
padding='max_length',
|
42 |
+
truncation=True,
|
43 |
+
max_length=self.max_length,
|
44 |
+
return_tensors="pt"
|
45 |
+
)
|
46 |
+
|
47 |
+
def generate_case_study(row: Dict[str, Any]) -> str:
|
48 |
+
"""Generate a detailed case study for a repository using available metadata"""
|
49 |
+
# Extract relevant information from the row
|
50 |
+
summary = row.get('summary', '').strip()
|
51 |
+
docstring = row.get('docstring', '').strip()
|
52 |
+
repo_name = row.get('repo', '').strip()
|
53 |
+
|
54 |
+
# Generate a more detailed overview using available information
|
55 |
+
overview = summary if summary else "This repository provides a software implementation"
|
56 |
+
if docstring:
|
57 |
+
# Extract the first paragraph of the docstring for additional context
|
58 |
+
first_para = docstring.split('\n\n')[0].strip()
|
59 |
+
overview = f"{overview}. {first_para}"
|
60 |
+
|
61 |
+
# Analyze the repository path to infer technology stack
|
62 |
+
path_components = row.get('path', '').lower().split('/')
|
63 |
+
tech_stack = []
|
64 |
+
|
65 |
+
# Common technology indicators in paths
|
66 |
+
if any('python' in comp for comp in path_components):
|
67 |
+
tech_stack.append("Python")
|
68 |
+
if any('tensorflow' in comp or 'tf' in comp for comp in path_components):
|
69 |
+
tech_stack.append("TensorFlow")
|
70 |
+
if any('pytorch' in comp for comp in path_components):
|
71 |
+
tech_stack.append("PyTorch")
|
72 |
+
if any('react' in comp for comp in path_components):
|
73 |
+
tech_stack.append("React")
|
74 |
+
|
75 |
+
tech_stack_str = ", ".join(tech_stack) if tech_stack else "various technologies"
|
76 |
+
|
77 |
+
case_study = f"""
|
78 |
+
### Overview
|
79 |
+
{overview}
|
80 |
+
|
81 |
+
### Technical Implementation
|
82 |
+
This project is built using {tech_stack_str}. The implementation focuses on providing a robust and maintainable solution for {summary.lower() if summary else 'the specified requirements'}.
|
83 |
+
|
84 |
+
### Key Features
|
85 |
+
- Primary functionality: {summary if summary else 'Implementation of core project requirements'}
|
86 |
+
- Complete documentation and code examples
|
87 |
+
- Well-structured implementation following best practices
|
88 |
+
- Modular design for easy integration and customization
|
89 |
+
|
90 |
+
### Use Cases
|
91 |
+
This repository is particularly valuable for:
|
92 |
+
- Developers implementing similar functionality in their projects
|
93 |
+
- Teams looking for reference implementations and best practices
|
94 |
+
- Projects requiring similar technical capabilities
|
95 |
+
- Learning and educational purposes in related technical domains
|
96 |
+
|
97 |
+
### Integration Considerations
|
98 |
+
The repository can be integrated into existing projects, with consideration for:
|
99 |
+
- Compatibility with existing technology stacks
|
100 |
+
- Required dependencies and prerequisites
|
101 |
+
- Potential customization needs
|
102 |
+
- Performance and scalability requirements
|
103 |
"""
|
104 |
+
return case_study
|
105 |
+
|
106 |
+
def display_recommendations(recommendations: pd.DataFrame):
|
107 |
+
"""Display recommendations in a list format with all details"""
|
108 |
+
st.markdown("### π― Top Recommendations")
|
109 |
|
110 |
+
# Create a list of recommendations
|
111 |
+
for idx, row in recommendations.iterrows():
|
112 |
+
with st.container():
|
113 |
+
# Header with repository name and match score
|
114 |
+
col1, col2 = st.columns([3, 1])
|
115 |
+
with col1:
|
116 |
+
st.markdown(f"### {idx + 1}. {row['repo']}")
|
117 |
+
with col2:
|
118 |
+
st.metric("Match Score", f"{row['similarity']:.2%}")
|
119 |
+
|
120 |
+
# Repository details
|
121 |
+
st.markdown(f"**URL:** [View Repository]({row['url']})")
|
122 |
+
st.markdown(f"**Path:** `{row['path']}`")
|
123 |
+
|
124 |
+
# Feedback buttons
|
125 |
+
col1, col2, col3 = st.columns([1, 1, 4])
|
126 |
+
with col1:
|
127 |
+
if st.button("π", key=f"like_{idx}"):
|
128 |
+
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
|
129 |
+
st.session_state.feedback[row['repo']]['likes'] += 1
|
130 |
+
st.success("Thanks for your feedback!")
|
131 |
+
with col2:
|
132 |
+
if st.button("π", key=f"dislike_{idx}"):
|
133 |
+
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
|
134 |
+
st.session_state.feedback[row['repo']]['dislikes'] += 1
|
135 |
+
st.success("Thanks for your feedback!")
|
136 |
+
|
137 |
+
# Documentation and case study in tabs
|
138 |
+
tab1, tab2 = st.tabs(["π Documentation", "π Case Study"])
|
139 |
+
with tab1:
|
140 |
+
if row['docstring']:
|
141 |
+
st.markdown(row['docstring'])
|
142 |
+
else:
|
143 |
+
st.info("No documentation available")
|
144 |
+
|
145 |
+
with tab2:
|
146 |
+
st.markdown(generate_case_study(row))
|
147 |
+
|
148 |
+
st.markdown("---")
|
149 |
+
|
150 |
+
@st.cache_resource
|
151 |
+
def load_data_and_model():
|
152 |
+
"""Load the dataset and model with optimized memory usage"""
|
153 |
try:
|
154 |
+
# Load dataset
|
155 |
+
dataset = load_dataset("frankjosh/filtered_dataset")
|
156 |
+
data = pd.DataFrame(dataset['train'])
|
157 |
+
|
158 |
+
# Take a random subset
|
159 |
+
data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
|
160 |
+
|
161 |
+
# Combine text fields
|
162 |
+
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
|
163 |
+
|
164 |
+
# Load model and tokenizer
|
165 |
model_name = "Salesforce/codet5-small"
|
166 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
167 |
+
model = AutoModel.from_pretrained(model_name)
|
168 |
|
169 |
+
if torch.cuda.is_available():
|
170 |
+
model = model.to(device)
|
|
|
|
|
171 |
|
172 |
+
model.eval()
|
173 |
+
return data, tokenizer, model
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
except Exception as e:
|
176 |
+
st.error(f"Error in initialization: {str(e)}")
|
177 |
+
st.stop()
|
178 |
|
179 |
+
def collate_fn(batch, pad_token_id):
|
180 |
+
max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
|
181 |
+
input_ids = []
|
182 |
+
attention_mask = []
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
for inputs in batch:
|
185 |
+
input_ids.append(torch.nn.functional.pad(
|
186 |
+
inputs['input_ids'].squeeze(),
|
187 |
+
(0, max_length - inputs['input_ids'].shape[1]),
|
188 |
+
value=pad_token_id
|
189 |
+
))
|
190 |
+
attention_mask.append(torch.nn.functional.pad(
|
191 |
+
inputs['attention_mask'].squeeze(),
|
192 |
+
(0, max_length - inputs['attention_mask'].shape[1]),
|
193 |
+
value=0
|
194 |
+
))
|
195 |
|
196 |
+
return {
|
197 |
+
'input_ids': torch.stack(input_ids),
|
198 |
+
'attention_mask': torch.stack(attention_mask)
|
199 |
+
}
|
200 |
|
201 |
+
def generate_embeddings_batch(model, batch, device):
|
202 |
+
"""Generate embeddings for a batch of inputs"""
|
203 |
+
with torch.no_grad():
|
204 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
205 |
+
outputs = model.encoder(**batch)
|
206 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
207 |
+
return embeddings.cpu().numpy()
|
208 |
+
|
209 |
+
def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int = 16):
|
210 |
+
"""Precompute embeddings with batching and progress tracking"""
|
211 |
+
dataset = TextDataset(data['text'].tolist(), tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
dataloader = DataLoader(
|
213 |
+
dataset,
|
214 |
+
batch_size=batch_size,
|
215 |
+
shuffle=False,
|
216 |
+
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
|
217 |
+
num_workers=2,
|
218 |
+
pin_memory=True
|
219 |
)
|
220 |
+
|
221 |
embeddings = []
|
222 |
+
total_batches = len(dataloader)
|
223 |
+
|
224 |
+
# Create a progress bar
|
225 |
+
progress_bar = st.progress(0)
|
226 |
+
status_text = st.empty()
|
227 |
+
|
228 |
+
start_time = datetime.now()
|
229 |
+
|
230 |
for i, batch in enumerate(dataloader):
|
231 |
+
# Generate embeddings for batch
|
232 |
+
batch_embeddings = generate_embeddings_batch(model, batch, device)
|
233 |
embeddings.extend(batch_embeddings)
|
234 |
+
|
235 |
+
# Update progress
|
236 |
+
progress = (i + 1) / total_batches
|
237 |
+
progress_bar.progress(progress)
|
238 |
+
|
239 |
+
# Calculate and display ETA
|
240 |
+
elapsed_time = (datetime.now() - start_time).total_seconds()
|
241 |
+
eta = (elapsed_time / (i + 1)) * (total_batches - (i + 1))
|
242 |
+
status_text.text(f"Processing batch {i+1}/{total_batches}. ETA: {int(eta)} seconds")
|
243 |
+
|
244 |
progress_bar.empty()
|
245 |
+
status_text.empty()
|
246 |
+
|
247 |
+
# Add embeddings to dataframe
|
248 |
data['embedding'] = embeddings
|
249 |
return data
|
250 |
|
251 |
@torch.no_grad()
|
252 |
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
|
253 |
+
"""Generate embedding for a single query"""
|
|
|
|
|
254 |
inputs = tokenizer(
|
255 |
+
query,
|
256 |
+
return_tensors="pt",
|
257 |
+
padding=True,
|
258 |
+
truncation=True,
|
259 |
+
max_length=512
|
260 |
).to(device)
|
261 |
+
|
262 |
outputs = model.encoder(**inputs)
|
263 |
+
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
264 |
+
return embedding.squeeze()
|
265 |
|
266 |
+
def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
|
267 |
+
"""Find similar repositories using vectorized operations"""
|
268 |
+
similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
data['similarity'] = similarities
|
|
|
270 |
return data.nlargest(top_n, 'similarity')
|
271 |
|
272 |
+
# Load resources
|
273 |
+
data, tokenizer, model = load_data_and_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
# Add info about subset size
|
276 |
+
st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purposes.")
|
|
|
277 |
|
278 |
+
# Precompute embeddings for the subset
|
279 |
+
data = precompute_embeddings(data, model, tokenizer)
|
280 |
|
281 |
+
# Main App Interface
|
282 |
+
st.title("Repository Recommender System π")
|
283 |
+
st.caption("Testing Version - Running on subset of data")
|
284 |
|
285 |
+
# Main interface
|
286 |
user_query = st.text_area(
|
287 |
+
"Describe your project:",
|
288 |
+
height=150,
|
289 |
+
placeholder="Example: I need a machine learning project for customer churn prediction..."
|
290 |
)
|
291 |
|
292 |
+
# Search button and filters
|
293 |
+
col1, col2 = st.columns([2, 1])
|
294 |
+
with col1:
|
295 |
+
search_button = st.button("π Search Repositories", type="primary")
|
296 |
+
with col2:
|
297 |
+
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
|
298 |
+
|
299 |
+
if search_button and user_query.strip():
|
300 |
+
with st.spinner("Finding relevant repositories..."):
|
301 |
+
# Generate query embedding and get recommendations
|
302 |
+
query_embedding = generate_query_embedding(model, tokenizer, user_query)
|
303 |
+
recommendations = find_similar_repos(query_embedding, data, top_n)
|
304 |
+
|
305 |
+
# Save to history
|
306 |
+
st.session_state.history.append({
|
307 |
+
'query': user_query,
|
308 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
309 |
+
'results': recommendations['repo'].tolist()
|
310 |
+
})
|
311 |
+
|
312 |
+
# Display recommendations using the new function
|
313 |
+
display_recommendations(recommendations)
|
314 |
+
|
315 |
+
# Sidebar for History and Stats
|
316 |
+
with st.sidebar:
|
317 |
+
st.header("π Search History")
|
318 |
+
if st.session_state.history:
|
319 |
+
for idx, item in enumerate(reversed(st.session_state.history[-5:])):
|
320 |
+
st.markdown(f"**Search {len(st.session_state.history)-idx}**")
|
321 |
+
st.markdown(f"Query: _{item['query'][:30]}..._")
|
322 |
+
st.caption(f"Time: {item['timestamp']}")
|
323 |
+
st.caption(f"Results: {len(item['results'])} repositories")
|
324 |
+
if st.button("Rerun this search", key=f"rerun_{idx}"):
|
325 |
+
st.session_state.rerun_query = item['query']
|
326 |
+
st.markdown("---")
|
327 |
else:
|
328 |
+
st.write("No search history yet")
|
329 |
+
|
330 |
+
st.header("π Usage Statistics")
|
331 |
+
st.write(f"Total Searches: {len(st.session_state.history)}")
|
332 |
+
if st.session_state.feedback:
|
333 |
+
feedback_df = pd.DataFrame(st.session_state.feedback).T
|
334 |
+
feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
|
335 |
+
st.bar_chart(feedback_df[['likes', 'dislikes']])
|
336 |
+
|
337 |
+
# Footer
|
338 |
+
st.markdown("---")
|
339 |
+
st.markdown(
|
340 |
+
"""
|
341 |
+
Made with π€ using CodeT5 and Streamlit |
|
342 |
+
|
343 |
+
"""
|
344 |
+
)
|