Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,13 +17,13 @@ def load_model():
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
# Check if GPU is available
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
-
model = AutoModel.from_pretrained(model_name).to(
|
21 |
-
return tokenizer, model
|
22 |
|
23 |
-
def generate_embedding(text, tokenizer, model):
|
24 |
"""Generate embeddings for a given text."""
|
25 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
26 |
-
inputs = {k: v.to(
|
27 |
with torch.no_grad():
|
28 |
outputs = model.encoder(**inputs)
|
29 |
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
@@ -53,14 +53,14 @@ def main():
|
|
53 |
st.write("Find Python repositories to learn production-level coding practices.")
|
54 |
|
55 |
# Load resources
|
56 |
-
tokenizer, model = load_model()
|
57 |
data = load_data()
|
58 |
|
59 |
# Input user query
|
60 |
user_query = st.text_input("Describe your project or learning goal:",
|
61 |
"I am working on a project to recommend music using pandas and numpy.")
|
62 |
if user_query:
|
63 |
-
query_embedding = generate_embedding(user_query, tokenizer, model)
|
64 |
|
65 |
# Compute similarity
|
66 |
data['similarity'] = data['embedding'].apply(
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
# Check if GPU is available
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
model = AutoModel.from_pretrained(model_name).to(device)
|
21 |
+
return tokenizer, model, device
|
22 |
|
23 |
+
def generate_embedding(text, tokenizer, model, device):
|
24 |
"""Generate embeddings for a given text."""
|
25 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
26 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
27 |
with torch.no_grad():
|
28 |
outputs = model.encoder(**inputs)
|
29 |
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
|
|
|
53 |
st.write("Find Python repositories to learn production-level coding practices.")
|
54 |
|
55 |
# Load resources
|
56 |
+
tokenizer, model, device = load_model()
|
57 |
data = load_data()
|
58 |
|
59 |
# Input user query
|
60 |
user_query = st.text_input("Describe your project or learning goal:",
|
61 |
"I am working on a project to recommend music using pandas and numpy.")
|
62 |
if user_query:
|
63 |
+
query_embedding = generate_embedding(user_query, tokenizer, model, device)
|
64 |
|
65 |
# Compute similarity
|
66 |
data['similarity'] = data['embedding'].apply(
|