import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # Import numpy # Check for GPU availability and set device device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Load the model and tokenizer model_name = "explorewithai/PersianSwear-Detector" # Corrected model name loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) # Move model to device loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) def predict_sentiment(text): """Predicts the sentiment (Bad Word, Good Word, Neutral Word) of a given text.""" inputs = loaded_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to GPU with torch.no_grad(): # Ensure no gradients are calculated outputs = loaded_model(**inputs) logits = outputs.logits probabilities = torch.nn.functional.softmax(logits, dim=-1) # Get probabilities prediction = torch.argmax(logits, dim=-1).item() # Map numeric labels to meaningful strings and get probabilities if prediction == 4: sentiment = "Bad sentence" elif prediction == 0: sentiment = "Good sentence" elif prediction == 3: sentiment = "Neutral sentence" else: sentiment = "Unknown" # Should not happen, but good practice # Create a dictionary for the probabilities prob_dict = {} if "Bad Word" in ["Bad Word", "Good Word", "Neutral Word"]: prob_dict["Bad Word"] = float(probabilities[0][4]) if 4 < probabilities.shape[1] else 0.0 if "Good Word" in ["Bad Word", "Good Word", "Neutral Word"]: prob_dict["Good Word"] = float(probabilities[0][0]) if 0 < probabilities.shape[1] else 0.0 if "Neutral Word" in ["Bad Word", "Good Word", "Neutral Word"]: prob_dict["Neutral Word"] = float(probabilities[0][3]) if 3 < probabilities.shape[1] else 0.0 return prob_dict, sentiment # Create example sentences examples = [ ["چه کت و شلوار زیبایی"], # Good word example ["این فیلم خیلی زیبا بود"], # Good word example ["میز"], # Neutral word example ["کثافت"], # Bad word example ["هوا خوب است."] #neutral ] # Create the Gradio interface iface = gr.Interface( fn=predict_sentiment, inputs=gr.Textbox(label="Enter Persian Text", lines=5, placeholder="Type your text here..."), outputs=[ gr.Label(label="Sentiment Probabilities"), gr.Textbox(label="Predicted Sentiment") # Output component for the sentiment string ], title="Persian Swear Word Detection", description="Enter a Persian sentence and get its sentiment (Good Word, Bad Word, or Neutral Word).", examples=examples, live=False # Set to True for automatic updates as you type ) if __name__ == "__main__": iface.launch()