Spaces:
Running
Running
feat: Enable MCP
Browse filesHello! This is an automated PR adding MCP compatibility to your AI App π€.
This PR introduces two improvements:
1. Adds docstrings to the functions in the app file that are directly connected to the Gradio UI, for the downstream LLM to use.
2. Enables the Model-Compute-Platform by adding `mcp_server=True` to the `.launch()` call.
No other logic has been changed. Please review and merge if it looks good!Learn more about MCP compatibility in Spaces here: https://huggingface.co/changelog/add-compatible-spaces-to-your-mcp-tools
app.py
CHANGED
@@ -19,6 +19,15 @@ css = "#col-container {margin:0 auto; max-width:960px;}"
|
|
19 |
|
20 |
# Background generation via Replicate
|
21 |
def _gen_bg(prompt: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
url = replicate.run(
|
23 |
"google/imagen-4-fast",
|
24 |
input={"prompt": prompt or "cinematic background", "aspect_ratio": "1:1"},
|
@@ -28,6 +37,21 @@ def _gen_bg(prompt: str):
|
|
28 |
|
29 |
# Main processing function
|
30 |
def process_image_and_text(subject_image, adapter_dict, prompt, _unused1, _unused2, size=ADAPTER_SIZE, rank=10.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
seed, guidance_scale, steps = 42, 2.5, 28
|
32 |
|
33 |
adapter_image = adapter_dict["image"] if isinstance(adapter_dict, dict) else adapter_dict
|
@@ -111,7 +135,7 @@ with gr.Blocks(css=css, title="ZenCtrl Inpainting") as demo:
|
|
111 |
|
112 |
gr.HTML(header_html)
|
113 |
gr.Markdown(
|
114 |
-
"**Generate context-aware images of your subject with ZenCtrl
|
115 |
"Open *Advanced Settings* for an AI-generated background. \n\n"
|
116 |
"**Note:** The model was trained mainly on interior scenes and other *rigid* objects. Results on people or highly deformable items may contain visual distortions."
|
117 |
)
|
@@ -146,12 +170,22 @@ with gr.Blocks(css=css, title="ZenCtrl Inpainting") as demo:
|
|
146 |
|
147 |
def _load_and_show(subj_path, bg_path, prompt_text):
|
148 |
"""
|
|
|
|
|
149 |
Takes the three values coming from an Examples row
|
150 |
and returns FOUR objects β one for every output widget:
|
151 |
1. subject PIL image -> subj_img
|
152 |
2. dict for the sketch component -> ref_img
|
153 |
3. prompt string -> promptbox
|
154 |
4. pre-rendered result PIL -> output_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
"""
|
156 |
out_path = subj_path.replace(".png", "_out.png") # your saved result
|
157 |
return (
|
@@ -203,4 +237,4 @@ with gr.Blocks(css=css, title="ZenCtrl Inpainting") as demo:
|
|
203 |
|
204 |
# ---------------- Launch ---------------------------------------
|
205 |
if __name__ == "__main__":
|
206 |
-
demo.launch()
|
|
|
19 |
|
20 |
# Background generation via Replicate
|
21 |
def _gen_bg(prompt: str):
|
22 |
+
"""
|
23 |
+
Generate a background image using Replicate's imagen-4-fast model.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
prompt: Text description for the background to generate
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
PIL.Image: Generated background image in RGB format
|
30 |
+
"""
|
31 |
url = replicate.run(
|
32 |
"google/imagen-4-fast",
|
33 |
input={"prompt": prompt or "cinematic background", "aspect_ratio": "1:1"},
|
|
|
37 |
|
38 |
# Main processing function
|
39 |
def process_image_and_text(subject_image, adapter_dict, prompt, _unused1, _unused2, size=ADAPTER_SIZE, rank=10.0):
|
40 |
+
"""
|
41 |
+
Process subject and adapter images with text prompt to generate inpainted result.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
subject_image: PIL.Image of the subject to be placed
|
45 |
+
adapter_dict: Either a PIL.Image or dict with 'image' and 'mask' keys for background/sketch
|
46 |
+
prompt: Text description for the generation
|
47 |
+
_unused1: Unused parameter (placeholder)
|
48 |
+
_unused2: Unused parameter (placeholder)
|
49 |
+
size: Target size for processing (default: ADAPTER_SIZE)
|
50 |
+
rank: Rank parameter for the model (default: 10.0)
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
tuple: (output_image, raw_image) - both are the same PIL.Image result
|
54 |
+
"""
|
55 |
seed, guidance_scale, steps = 42, 2.5, 28
|
56 |
|
57 |
adapter_image = adapter_dict["image"] if isinstance(adapter_dict, dict) else adapter_dict
|
|
|
135 |
|
136 |
gr.HTML(header_html)
|
137 |
gr.Markdown(
|
138 |
+
"**Generate context-aware images of your subject with ZenCtrl's inpainting playground.** Upload a subject + optional mask, write a prompt, and hit **Generate**. \n"
|
139 |
"Open *Advanced Settings* for an AI-generated background. \n\n"
|
140 |
"**Note:** The model was trained mainly on interior scenes and other *rigid* objects. Results on people or highly deformable items may contain visual distortions."
|
141 |
)
|
|
|
170 |
|
171 |
def _load_and_show(subj_path, bg_path, prompt_text):
|
172 |
"""
|
173 |
+
Load example images and prompt for display in the interface.
|
174 |
+
|
175 |
Takes the three values coming from an Examples row
|
176 |
and returns FOUR objects β one for every output widget:
|
177 |
1. subject PIL image -> subj_img
|
178 |
2. dict for the sketch component -> ref_img
|
179 |
3. prompt string -> promptbox
|
180 |
4. pre-rendered result PIL -> output_img
|
181 |
+
|
182 |
+
Args:
|
183 |
+
subj_path: Path to subject image file
|
184 |
+
bg_path: Path to background image file
|
185 |
+
prompt_text: Example prompt text
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
tuple: (subject_image, sketch_dict, prompt, output_image)
|
189 |
"""
|
190 |
out_path = subj_path.replace(".png", "_out.png") # your saved result
|
191 |
return (
|
|
|
237 |
|
238 |
# ---------------- Launch ---------------------------------------
|
239 |
if __name__ == "__main__":
|
240 |
+
demo.launch(mcp_server=True)
|